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CHAPTER	1:	THE	CONCEPT	OF	STRESS	

Introduction	to	Mechanics	(Strength)	of	Materials:	Objectives	

The	main	objective	of	the	study	of	the	mechanics	of	materials	is	to	investigate	the	behaviour	of	solid	

bodies	subjected	to	various	types	of	loading.	We	aim	to	determine	whether	or	not	a	solid	body	can	

withstand	the	applied	loads	to	it.	An	understanding	of	mechanical	behaviour	is	essential	for	the	safe	

design	of	all	types	of	structures.	The	solid	bodies	considered	in	this	course	include	bars	with	axial	

loads,	shafts	 in	torsion,	and	beams	in	bending.	 In	this	course	only	solid	structures	with	simplistic	

geometries	such	as	bodies	with	circular	or	square	cross	sections	are	considered.		

The	difference	of	the	study	of	“Statics”	with	“Mechanics	of	materials”	is	that	in	“Statics”	we	simply	

aim	to	determine	 internal	 loads	that	a	structure	undergoes	but	we	do	not	 investigate	whether	or	

not	 the	 structure	 can	 withstand	 the	 applied	 loads	 to	 it.	 In	 this	 course,	 however,	 we	 not	 only	

determine	if	the	structure	can	withstand	the	applied	loads	or	not	but	we	estimate	the	deformation	

of	 the	 structure	under	 the	 applied	 loads	 too.	Determining	deformations	 is	 a	 very	 important	 step	

toward	the	safe	design	of	all	types	of	structures	(Turbine	failure	of	flight	Qantas	32,	A380).	

Concept	of	Stress	(Normal	Stress)	

“Force”	 is	not	an	appropriate	quantity	 to	describe	 the	 tolerance	of	materials.	For	example	a	steel	

bar	 with	 1	 mm2	 cross	 sectional	 area	 can	 withstand	 very	 small	 tensile	 or	 compressive	 forces	

compared	to	the	same	steel	bar	having	a	cross	sectional	area	of	100	mm2.	Therefore,	a	quantity	is	

defined	which	does	not	depend	on	the	size	of	sample	bar;	force	divided	by	cross	sectional	area:	
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For	 example	 Aluminum	 Alloy	 (1100‐H14)	 can	 tolerate	 110	 MPa	 tensile	 stress	 and	 70	 MPa	

compressive	stress.	

	

	

	

Structural	members	subjected	to	axial	loads.	The	tow	bar	is	
in	tension	and	the	landing	gear	strut	is	in	compression.	
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Example	 1:	 A	 simple	 pin‐
connected	 truss	 is	 loaded	 and	
supported	as	shown.	All	members	
of	 the	 truss	 are	 aluminum	 pipes	
that	 have	 an	 outside	 diameter	 of	
60	mm	 and	 a	wall	 thickness	 of	 4	
mm.	 determine	 the	 normal	 stress	
in	each	truss	member.	

 

Overal	equilibrium:	

	

Equilibrium	at	joint	A:	

	

	

Equilibrium	at	joint	C:	

 

 

 

Does	the	structure	fail?	Where	does	it	fail	from?	What	to	do	to	avoid	its	failure?
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Example	 2:	 Two solid cylindrical 
rods (1) and (2) are joined together 
at flange B and loaded, as shown. If 
the normal stress in each rod must 
be limited to 120 MPa, determine 
the minimum diameter required for 
each rod.	

 

 

ଵߪ ൌ
ଵܨ
ଵܣ

→ ܽܲܯ	120 ൌ
80	000	ܰ

ଵܣ
→ ଵܣ ൌ 666.666	݉݉ଶ 

→ ݀ଵ ൌ 29.1	݉݉ 

ଶߪ ൌ
ଶܨ
ଶܣ

→ ܽܲܯ	120 ൌ
200	000	ܰ

ଶܣ
 

→ ଶܣ ൌ 1666.666	݉݉ଶ 

→ ݀ଶ ൌ 46.1	݉݉ 

It	is	evident	that	these	are	minimal	values	for	d1	and	d2.	

Example	3:	Bar	(1)	has	a	cross	sectional	area	of	485	
mm2.	 If	 the	stress	 in	bar	 (1)	must	be	 limited	 to	210	
MPa,	 determine	 the	 maximum	 load	 P	 that	 may	 be	
supported	by	the	structure	(the	rod	ABC	is	rigid).	
	

ଵߪ ൌ
ଵܨ
ଵܣ

→ ܽܲܯ	210 ൌ
ଵܨ

485	݉݉ଶ → ଵܨ ൌ 101850	ܰ	

	

ܯ ൌ 0 → 3.0	ܲ െ ଵܨ	1.8 ൌ 0 → ଵܨ ൌ 1.6667	ܲ	

	

ܲ ൌ
ଵܨ

1.6667
ൌ
101850	ܰ
1.6667

ൌ 61110 ܰ	
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Limitations	of		࣌ ൌ 	/ࡲ

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

	 	

  
The	distribution	of	internal	force	at	section	A	and	B

The	distribution	of	force	on	cross	sections	at	
A	and	B	are	shown.	Near	the	ends	of	the	bar,	
for	 example	 at	 section	 A,	 the	 resultant	
normal	force,	FA,	is	not	uniformly	distributed	
over	 the	 cross	 section;	 but	 at	 section	 B,	
farther	from	the	point	of	application	of	force	
P,	 the	 force	 distribution	 is	 uniform	 (Saint‐
Venant’s	Principle).	

௩ߪ	:ݏݏ݁ݎݐݏ	݁݃ܽݎ݁ݒܣ ൌ
ܲ
ܣ
	

ߪ	:ݐ݊݅	ܽ	ݐܽ	ݏݏ݁ݎݐܵ ൌ lim
∆→

ܨ∆
ܣ∆
	

	
At	section	B:	ߪ௩ ≅ :A	section	at	but	ሻݏݐ݊݅	݈݈ܽ	ݐሺܽ	ߪ ௩ߪ ് ߪ

It	is	thus	assumed	that:			ࢍ࢜ࢇ࣌ሻ ൌ
ࡲ

ൌ ࡼ


ࢊࢇ ሻࢍ࢜ࢇ࣌ ൌ

ࡲ

ൌ ࡼ


	

In	other	words:	

ܲ ൌ න݀ܨ ൌ න ܣ݀	ߪ


ݐ݄ܽݐ	݀݁݉ݑݏݏܽ	ݏ݅	ݐ݅				 ܲ ൌ 	ܣ௩ߪ

 

	
Stress	distributions	at	different	sections	along	

axially	loaded	member	

 

Centric	Loading	

	

Eccentric	Loading	

	→ ࣌ ്
ࡼ

	

As	a	practical	rule,	 the	 formula	σ	=	
P/A	may	be	used	with	good	accuracy	
at	any	point	within	a	prismatic	bar	
that	is	at	least	as	far	away	from	the	
stress	 concentration	 as	 the	 largest	
lateral	 dimension	 of	 the	 bar	 (the	
stress	distribution	in	the	bar	shown	
above	 is	 uniform	 at	 distances	 b	 or	
greater	from	the	enlarged	ends).	

b	



(6)	
   

   

Shear	Stress	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

	 	

The	 internal	 forces	and	 the	 corresponding	 stresses	discussed	 in	
previous	section	were	normal	to	the	section	considered	(normal	
stress).	 A	 very	 different	 type	 of	 stress	 is	 obtained	 when	
transverse	forces	P	are	applied	to	a	member	AB.	Passing	a	section	
at	C	between	the	points	of	application	of	the	two	forces	we	obtain	
the	 diagram	 of	 portion	 AC	 shown.	 We	 conclude	 that	 internal	
forces	 must	 exist	 in	 the	 plane	 of	 the	 section,	 and	 that	 their	
resultant	 is	 equal	 to	 P.	 These	 elementary	 internal	 forces	 are	
called	 shearing	forces,	and	 the	magnitude	P	of	 their	 resultant	 is	
the	shear	in	the	section.	Dividing	the	shear	P	by	the	area	A	of	the	
cross	section,	we	obtain	the	average	shearing	stress	in	the	section:	

߬௩ ൌ
ܲ
ܣ
	

It	 should	 be	 emphasized	 that	 the	 value	 obtained	 is	 an	 average	
value	of	 the	 shearing	 stress	over	 the	 entire	 section.	Contrary	 to	
what	 we	 said	 earlier	 for	 normal	 stresses,	 the	 distribution	 of	
shearing	stresses	across	the	section	cannot	be	assumed	uniform.	
As	 you	 will	 see	 later,	 the	 actual	 value	߬	of	 the	 shearing	 stress	
varies	 from	 zero	 at	 the	 surface	 of	 the	 member	 to	 a	 maximum	
value	߬௫	that	may	be	much	larger	than	the	average	value	߬௩.	
	
Shear	Stress	in	Connections	and	Joints	

 

	

Member	with	transverse	loads	

Shearing	 stresses	 are	 commonly	 found	 in	 bolts,	 pins,	 and	 rivets	 used	 to	 connect	 various	 structural	
members	and	machine	components.	

 

ࢍ࢜ࢇ࣎ ൌ
ࢂ

ൌ
ࡼ

 Single	Shear	

Double	Shear	

ࢍ࢜ࢇ࣎ ൌ
ࢂ

ൌ
/ࡼ
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Other	Examples	of	Single	Shear	

	

	

	

	

	

Other	Examples	of	Double	Shear	

	

	

	

	

	

Failure	of	a	Bolt	

	

	

	

Bearing	Stress	in	Connections	

Bolts,	 pins,	 and	 rivets	 create	 stresses	 in	 the	 members	 they	 connect,	 along	 the	 bearing	 surface,	or	
surface	of	contact.	

	

	 	

	 	

࢈࣌ ൌ
ࡼ

ൌ
ࡼ
ࢊ࢚

 

 

P	
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Example	4:	Calculate	normal,	shear,	and	bearing	stresses	in	the	structure	shown	

 
From	“Statics”:	ܨ ൌ 40	݇ܰ	ሺ݊݅ݏݏ݁ݎ݉ܥሻ 	

ܨ	 ൌ 50 ݇ܰ ሺܶ݁݊݊݅ݏሻ	

Normal	stresses	in	rod	BC:	

ሻ݊݅ݐܿ݁ݏ	ݎ݈ܽݑܿݎ݅ܿ	ݐሺܽ	ߪ ൌ
50	000	ܰ

݉݉ሻଶ	4ሺ20/ߨ
ൌ 	ܽܲܯ	159.1

ሻ݊݅ݐܿ݁ݏ	ݐ݈݂ܽ	ݐሺܽ	ߪ ൌ
50	000	ܰ

20	݉݉ ൈ 40	݉݉
ൌ 	ܽܲܯ	62.5

ሻ݊݅ݐܿ݁ݏ	݈݄݁	ݐሺܽ	ߪ ൌ
50	000	ܰ

20	݉݉ ൈ ሺ40 െ 25ሻ ݉݉
ൌ 167 	ܽܲܯ

Reduced	area	in	tension

Reduced	area	in	compression
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Normal	stresses	in	rod	AB:	

ሻ݊݅ݐܿ݁ݏ	݀݅݉	ݐሺܽ	ߪ ൌ
െ40	000	ܰ

30	݉݉ ൈ 50	݉݉
ൌ െ26.7	ܽܲܯ	

ሻ	ݐݎܽ	݄݁ܽݏ	ܷ	ݐሺܽ	ߪ ൌ
െ20	000	ܰ

20	݉݉ ൈ 50	݉݉
ൌ െ20	ܽܲܯ	

	

Shear	stresses	at	connections	

Pin	C:	

߬௩ ൌ
ܲ
ܣ
ൌ

50	000	ܰ
݉݉ሻଶ	4ሺ25/ߨ

ൌ  ܽܲܯ	102

Pin	A:	

߬௩ ൌ
ܲ
ܣ
ൌ

20	000	ܰ
݉݉ሻଶ	4ሺ25/ߨ

ൌ  ܽܲܯ	40.7

Pin	B:	

߬௩ሻ௫ ൌ
ܲ
ܣ
ൌ

25	000	ܰ
݉݉ሻଶ	4ሺ25/ߨ

ൌ  ܽܲܯ	50.9

 

	

	

	

Bearing	stresses	

ሻܣ	ݐሺܽߪ ൌ
ܲ
ܣ
ൌ
ܲ
݀ݐ

ൌ
40	000	ܰ	

30	݉݉	 ൈ 25	݉݉
ൌ  ܽܲܯ	53.3

ሻܣ	ݐ݁݇ܿݎܾܽ	ݐሺܽߪ ൌ
ܲ/2
݀ݐ

ൌ
20	000	ܰ	

25	݉݉	 ൈ 25	݉݉
ൌ  ܽܲܯ	32

ሻܥ	ݐሺܽߪ ൌ
ܲ
ܣ
ൌ
ܲ
݀ݐ

ൌ
50	000	ܰ	

20	݉݉	 ൈ 25	݉݉
ൌ  ܽܲܯ	100

ሻܥ	ݐ݁݇ܿݎܾܽ	ݐሺܽߪ ൌ
ܲ
݀ݐ

ൌ
50	000	ܰ	

20	݉݉	 ൈ 25	݉݉
ൌ 100  ܽܲܯ

 
The	same	procedure	should	be	followed	for	bearing	
stresses	at	pin	B.	
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Stress	on	an	Oblique	Plane	under	Axial	Loading	
Axial	 forces	cause	both	normal	and	shearing	stresses	on	planes	which	are	not	perpendicular	to	the	
axis	 of	 the	member.	 Similarly,	 transverse	 forces	 exerted	 on	 a	 bolt	 or	 a	 pin	 cause	 both	 normal	 and	
shearing	stresses	on	planes	which	are	not	perpendicular	to	the	axis	of	the	bolt	or	pin.	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

 

ࣂ࣌ ൌ
ࡲ
ࣂ

ൌ
ࣂܛܗ܋ࡼ

ࣂܛܗ܋

ൌ
ࡼ


ܛܗ܋ ࣂ ൌ ࢞࣌ ܛܗ܋  ࣂ

ࣂ࣎											 ൌ
ࢂ
ࣂ

ൌ
ࣂܖܑܛࡼ
/ ࣂܛܗ܋

ൌ
ࡼ


ࣂܖܑܛ ࣂܛܗ܋ ൌ ࢞࣌ ࣂܖܑܛ  ࣂܛܗ܋

 

࢞ࢇ࣌ ൌ
ࡼ

	ሺ࢚ࢇ	ࣂ ൌ ሻ → ࣎ ൌ  

࢞ࢇ࣎ ൌ
ࡼ


ࣂ	࢚ࢇ	 ൌ °	 → °ୀࣂ࣌ ൌ
ࡼ


 

 

 

 

 

Shear	failure	
along	a	45°	
plane	of	a	
wood	block	
(weaker	in	
shear)	
loaded	in	

compression	

Slip	bands
in	a	

polished	
steel	

specimen	
loaded	in	
tension
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Example	5:	Several	short	pieces	of	timber	are	
to	 be	 glued	 together	 end‐to‐end	 to	 form	 a	
single	 longer	 piece	 of	 timber	 as	 shown.	 The	
glue	 that	 is	 to	 be	 used	 in	 the	 splice	 joint	 is	
50%	 stronger	 in	 shear	 than	 in	 tension.	 Is	 it	
possible	 to	 take	 advantage	 of	 this	 higher	
shear	 strength	 by	 selecting	 a	 splice	 angle	 θ	
such	that	the	magnitude	of	the	average	shear	
stress	 on	 the	 joint	 is	 50%	 higher	 than	 the	
average	 normal	 stress?	 If	 so,	 what	 is	 the	
appropriate	angle?	

We	want	to	determine	a	splice	angle	θs such	that	|߬ఏ௦| ൌ 1.5 ఏ௦ߪ

 

 

→ ௫ߪ sin ௦ߠ cos ௦ߠ ൌ േ ௫ߪ1.5 cosଶ ௦ߠ → tanߠ௦ ൌ േ 1.5
→ ௦ߠ ൌ േ56.3° 

Example	6:	A	prismatic	bar	having	cross‐
sectional	 area	 1200	 mm2	 is	 compressed	
by	an	axial	load	P	=	90	kN.	(a)	Determine	
the	stresses	acting	on	an	 inclined	section	
pq	cut	through	the	bar	at	an	angle	θ	=	25°.	
(b)	Determine	the	complete	state	of	stress	
for	 θ	=	 25°	 and	 show	 the	 stresses	 on	 a	
properly	oriented	stress	element.	  
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Stress	under	General	Loading	Conditions;	Components	of	Stress	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

Thus	 far	we	have	been	 limited	 to	members	under	axial	 loading	and	connections	under	 transverse	
loading.	 Most	 structural	 members	 and	 machine	 components	 are,	 however,	 under	 more	 complex	
loading	conditions.	We	are	not	trying	to	determine	other	stress	components	here	but	simply	aim	to	
introduce	them	and	the	convections	involved. 

 

࢞࣌	 ൌ ܕܑܔ
→∆

࢞ࡲ∆

∆
									 ࢟࢞࣎ ൌ ܕܑܔ

→∆

࢞࢟ࢂ∆

∆
ࢠ࢞࣎ ൌ ܕܑܔ

→∆

࢞ࢠࢂ∆

∆
	

 
 

 
0

0









zyx

zyx

MMM

FFF

ࢠࡹ ൌ  → ሺ∆࢟࢞࣎ሻࢇ െ ሺ∆࢞࢟࣎ሻࢇ ൌ  

࢟࢞࣎ ൌ ࢞࢟࣎ → ࢟࢘ࢇ࢙ ࢠ࢞࣎ ൌ ࢊࢇ	࢞ࢠ࣎ ࢠ࢟࣎ ൌ  ࢟ࢠ࣎

Tensor	of	stress	at	a	point	 ൌ 
௫ߪ ߬௫௬ ߬௫௭
߬௬௫ ௬ߪ ߬௬௭
߬௭௫ ߬௭௬ ௭ߪ

൩	

In	general	loading	conditions	six	independent	stress	components	at	each	point	may	exist.	



(13)	
   

   

Design	Considerations	

(1) 	Ultimate	Strength	of	a	Material	

An	important	element	to	be	considered	by	a	designer	is	how	the	material	that	has	been	selected	
will	behave	under	a	load.	For	a	given	material,	this	is	determined	by	performing	specific	tests	on	
prepared	 samples	 of	 the	material.	 For	 example,	 a	 test	 specimen	 of	 steel	may	 be	 prepared	 and	
placed	in	a	laboratory	testing	machine	to	be	subjected	to	a	known	centric	axial	tensile	force,	as	it	
will	be	described	later.	As	the	magnitude	of	the	force	is	increased,	various	changes	in	the	specimen	
are	measured,	 for	 example,	 changes	 in	 its	 length	 and	 its	 diameter.	 Eventually	 the	 largest	 force	
which	may	be	applied	to	the	specimen	is	reached,	and	the	specimen	breaks.	This	largest	force	is	
called	 the	 ultimate	 load	 for	 the	 test	 specimen	 and	 is	 denoted	 by	 PU.	 Since	 the	 applied	 load	 is	
centric,	we	may	divide	the	ultimate	load	by	the	original	cross‐sectional	area	of	the	rod	to	obtain	
the	ultimate	normal	stress	of	the	material	used.	This	stress	is	also	known	as	the	ultimate	strength	
in	tension	of	the	material.	Several	test	procedures	are	available	to	determine	the	ultimate	shearing	
stress,	or	ultimate	strength	in	shear,	of	a	material	(will	be	explained	later	on).	
	

(2) 	Factor	of	Safety	

The	maximum	 load	 that	a	 structural	member	or	a	machine	 component	will	be	allowed	 to	carry	
under	normal	conditions	of	utilization	is	considerably	smaller	than	the	ultimate	load.	This	smaller	
load	is	referred	to	as	the	allowable	load.	Thus,	only	a	fraction	of	the	ultimate‐load	capacity	of	the	
member	is	utilized	when	the	allowable	load	is	applied.	The	remaining	portion	of	the	load‐carrying	
capacity	of	the	member	is	kept	in	reserve	to	assure	its	safe	performance.	The	ratio	of	the	ultimate	
load	to	the	allowable	load	is	used	to	define	the	factor	of	safety:	

࢚࢟ࢋࢌࢇࡿ	ࢌ	࢚࢘ࢉࢇࡲ ൌ .ࡲ .ࡿ ൌ
ࢊࢇࡸ	ࢋ࢚ࢇ࢚ࢁ
ࢊࢇࡸ	ࢋ࢈ࢇ࢝

		࢘		
࢙࢙ࢋ࢚࢘ࡿ	ࢋ࢚ࢇ࢚ࢁ
࢙࢙ࢋ࢚࢘ࡿ	ࢋ࢈ࢇ࢝

		

Of	course,	the	factor	of	safety	must	be	greater	than	1.0	if	failure	is	to	be	avoided.	Depending	upon	
the	circumstances,	factors	of	safety	from	slightly	above	1.0	to	as	much	as	10	are	used.	The	use	of	a	
small	value	of	factor	of	safety	(e.g.,	FS	=	1.1)	is	 justified	only	when	it	 is	possible,	by	analysis	and	
testing,	 to	 sufficiently	minimize	 uncertainties,	 and	when	 there	 is	 no	 likelihood	 that	 failure	will	
result	in	unacceptable	circumstances	such	as	serious	personal	injury	or	death.	On	the	other	hand,	
it	is	undesirable	to	use	a	factor	of	safety	that	is	unnecessarily	large	(e.g.,	FS	=	3),	since	that	would	
lead	 to	 excess	 structural	weight,	which,	 in	 turn,	 entails	 excess	 initial	 costs	 and	 operating	 costs.	
Since	the	choice	of	a	value	of	factor	of	safety	has	such	important	economic	and	legal	implications,	
design	specifications,	including	the	relevant	factor(s)	of	safety	to	be	used,	conform	to	design	codes	
or	other	standards	developed	by	groups	of	experienced	engineers	 in	engineering	societies	or	 in	
various	government	agencies.	
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Example	 7:	 Link	 AB	 is	 to	 be	 made	 of	 a	 steel	 for	
which	 the	 ultimate	 normal	 stress	 is	 450	 MPa.
Determine	the	cross‐sectional	area	of	AB	for	which	
the	 factor	 of	 safety	 will	 be	 3.50.	 Assume	 that	 the	
link	will	be	adequately	reinforced	around	the	pins	
at	A	and	B.	 Design	 the	 single	 shear	 pin	A	 (find	 its	
diameter)	 assuming	 a	 factor	 of	 safety	 of	 2.5	 if	 its	
ultimate	shear	stress	is	100	MPa.	
	

ߪ ൌ
ܨ
ܣ

→
ܽܲܯ	450

3.5
ൌ 	ܽܲܯ	128.57

ܯ ൌ 0 →	

	
ܨ 	sin 35° ൈ 0.8	݉ െ 20	݇ܰ ൈ 0.4	݉ െ 9.6	݇ܰ

ൈ 0.2	݉ ൌ 0.	
	

ܨ ൌ 21.618	݇ܰ,
ܨ
ܣ

ൌ 	ܽܲܯ	128.57

	

→
21618	ܰ
ܣ

ൌ ܽܲܯ	128.57 → ܣ ൌ 168.1	݉݉ଶ	

߬ ൌ
ܨ
ߨ
4 ݀

ଶ
ൌ
21618	ܰ
ߨ
4 ݀

ଶ
ൌ
ܽܲܯ	100

2.5
 

݀ ൌ 26.2	݉݉ 

 

TBR	 1	 (1390):	 In	 the	
structure	 shown,	 an	 8‐
mm‐diameter	 pin	 is	
used	 at	 A,	 and	 12‐mm‐
diameter	 pins	 are	 used	
at	 B	 and	 D.	 Knowing	
that	 the	 ultimate	
shearing	 stress	 is	 100	
MPa	 at	 all	 connections	
(pins)	 and	 that	 the	
ultimate	 normal	 stress	
is	 250	 MPa	 in	 each	 of	
the	 two	 links	 joining	 B	
and	 D,	 determine	 the	
allowable	 load	 P	 if	 an	
overall	 factor	 of	 safety	
of	 3.0	 is	 desired.	 Find	
bearing	 stress	 at	 D	
based	 on	 the	 calculated	
P.	
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Based	on	compression	in	links	BD:	

ߪ ൌ
/2ܨ
ܣ

→
ܽܲܯ	250

3
ൌ

/2ܨ
20	݉݉ ൈ 8	݉݉

 

ܨ ൌ 26666.67	ܰ 

ܯ ൌ 0 → ܨ ൈ 200	݉݉ െ ܲ ൈ 380	݉݉ ൌ 0 

→ ܲ ൌ
10
19

ܨ ൌ
10
19

ൈ 26666.67	ܰ ൌ 14035.1 ܰ 

Based	on	double	shear	in	pin	A:	

ܨ௫ ൌ 0 ௫ܣ→ ൌ 0		

߬ ൌ
௬/2ܣ
ߨ
4 ݀

ଶ
→
ܽܲܯ	100

3
ൌ

௬/2ܣ
ߨ
4 ሺ8	݉݉ሻ

ଶ
→ ௬ܣ ൌ 3351	ܰ	

ܯ ൌ 0 →ܲሺ180ሻ െ ௬ሺ200ሻܣ ൌ 0	 → ௬ܣ ൌ
9
10

ܲ										 → 			ܲ ൌ
10
9
ൈ 3351	ܰ ൌ 3723.4	ܰ	

	

Based	on	double	shear	in	pins	B	and	D:	

߬ ൌ
/2ܨ
ߨ
4 ݀

ଶ
→
ܽܲܯ	100

3
ൌ

/2ܨ
ߨ
4 ሺ12	݉݉ሻ

ଶ
→ ܨ ൌ 8377.6	ܰ → ܲ ൌ

10
19

ሺ8377.6	ܰሻ ൌ 3968.3	ܰ	

ܲ ൌ minሺ14035.1	ܰ, 3723.4	ܰ, 3968.3	ܰሻ ൌ 3723.4	ܰ	

	

Bearing	stresses	at	D:	

ሻܦܤ	݈݇݊݅	ݐሺܽߪ ൌ

ܨ
2

8	݉݉ ൈ 12	݉݉
ൌ

19
10ܲ
2

8	݉݉ ൈ 12	݉݉
ൌ

19
10 ሺ3723.4	ܰሻ

2
8	݉݉ ൈ 12	݉݉

ൌ 	ܽܲܯ	36.8

ሻܦ	ݐ݁݇ܿܽݎܾ	݄݁ݐ	ݐሺܽߪ ൌ
ܨ

12	݉݉ ൈ 12	݉݉
ൌ

19
10ܲ

12 ݉݉ ൈ 12 ݉݉
ൌ

19
10 ሺ3723.4	ܰሻ

12 ݉݉ ൈ 12	݉݉
ൌ 	ܽܲܯ	49.1

	



(16)	
   

   

TBR	2:	The	steel	plane	truss	shown	in	the	figure	is	loaded	by	three	forces	P,	each	of	which	is	490	kN.	
The	truss	members	each	have	a	cross‐sectional	area	of	3900	mm2	and	are	connected	by	pins	each	with	
a	diameter	of	dp	=18	mm.	Members	AC	and	BC	each	consist	of	one	bar	with	thickness	of	tAC	=	tBC	=19	
mm.	Member	AB	is	composed	of	 two	bars	 [see	 figure	part	 (b)]	each	having	 thickness	 tAB/2	=10	mm	
and	length	L	=	3	m.	The	roller	support	at	B,	 is	made	up	of	two	support	plates,	each	having	thickness	
tsp/2	=12	mm.		

(a)	Find	support	reactions	at	joints	A	and	B	and	forces	in	members	AB,	BC,	and	AB.	

(b)	Calculate	the	largest	average	shear	stress	in	the	pin	at	 joint	B,	disregarding	friction	between	the	
members;	see	figures	parts	(b)	and	(c)	for	sectional	views	of	the	joint.	

(c)	Calculate	the	largest	average	bearing	stress	acting	against	the	pin	at	joint	B.	

	 	

 

 

Answer:	

(a)	FAC	=	‐693	kN,	FAB	=	490	kN,	FBC	=	0	

(b)	963	MPa	

(c)	1361	MPa	
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Solution	(TBR	2):	
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TBR	 3	 (1391): Rigid bar ABD is supported by a pin connection at A and a tension link BC. The 8-
mmdiameter pin at A is supported in a double shear connection, and the 12-mm-diameter pins at B and 
C are both used in single shear connections. Link BC is 30-mm wide and 6-mm thick. The ultimate 
shear strength of the pins is 330 MPa and the yield strength of link BC is 250 MPa. (a) Determine the 
factor of safety in pins A and B with respect to the ultimate shear strength. (b) Determine the factor of 
safety in link BC with respect to the yield strength. (c) Determine bearing stresses at C. 

	

	

		

A	and	C	
connections	
from	top	

Sin	53.1	
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TBR	 4	 (1392):	 The simple pin-connected 
structure carries a concentrated load P as 
shown. The rigid bar is supported by strut AB 
and by a pin support at C. The steel strut AB 
has a cross sectional area of 161 mm2

 and a 
yield strength of 413 MPa. The diameter of the 
steel pin at C is 9.5 mm, and the ultimate shear 
strength is 372 MPa. If a factor of safety of 2.0 
is required in both the strut and the pin at C, 
determine the maximum load P that can be 
supported by the structure. Based on the 
calculated P, determine bearing stresses at C. 
 
 

ߪ ൌ
ܽܲܯ	413

2
ൌ
ܨ
ܣ

ൌ
ܨ

161	݉݉ଶ → ܨ ൌ 33246.5 ܰ 

ܯ ൌ 0 → ܲሺ56	ܿ݉ሻ െ ܿ݉ሻ	ሺ25ܨ ൌ 0 

→ ܲ ൌ
25
56

ሺ33246.5ሻ ൌ 14842.2	ܰ												ሺ1ሻ 

 

 

߬ ൌ
ܽܲܯ	372

2
ൌ

2/ܥ
ߨ
4 ሺ9.5	݉݉ሻ

ଶ
→ ܥ ൌ 26368.17	ܰ 

ܨ௬ ൌ 0 ௬ܥ→ ൌ ܲ 

ܯ ൌ 0 ܿ݉ሻ	௫ሺ25ܥ	→ െ ܲሺ56ሻ ൌ 0 → ௫ܥ ൌ 2.24ܲ 

ටܥ௫ଶ  ௬ଶܥ ൌ ܥ ൌ 26368.17	ܰ → ඥሺ2.24ܲሻଶ  ሺܲሻଶ ൌ 26368.17	ܰ 

→ ܲ ൌ 10749	ܰ															ሺ2ሻ 

ܲ௫ ൌ 10749	ܰ ൌ 10.75	݇ܰ 

 

ܥܤ	ݐܽߪ ൌ
26368.17	ܰ
20 ൈ 9.5	݉݉ଶ ൌ  ܽܲܯ	138.7

ݐ݁݇ܿܽݎܤ	ݐܽߪ ൌ

26368.17
2 ܰ

8 ൈ 9.5	݉݉ଶ ൌ  ܽܲܯ	346.9
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TBR	 4	 (1393):	 The	 davit ABD 
with a cross sectional area of 
967 mm2 is supported at A by a 
pin connection and at B by a tie 
rod (1). The pin at A has a 
diameter of 32 mm and the pins at 
B and C are each 19 mm 
diameter pins. The ultimate 
shear strength in each pin is 550 
MPa, and the yield strength of 
the tie rod is 248 MPa. A 
concentrated load of 111 kN is 
applied as shown to the davit 
structure at D. Determine: (a) the 
factor of safety with respect to 
the yield strength for tie rod (1), 
(b) factor of safety with respect 
to the ultimate strength for the 
pins at A and B, and (c) bearing 
stress at bracket A (assuming a 
thickness of 30 mm).	

ܯ ൌ 0 → ଵܨ cos 36.8° ൈ2.7 ൌ 111 cos 60° ൈ ሺ2.7  0.6ሻ  111 sin 60° ൈ 2.1 → 

ଵܨ ൌ 178.25	݇ܰ      ③ 

ܨ௫ ൌ 0 → ௫ܣ  111 cos 60° െ 178.25 ൈ cos 36.8° ൌ 0 → ௫ܣ ൌ 87.1	݇ܰ							③ 

ܨ௬ ൌ 0 → ௬ܣ െ 111 sin 60° െ 178.25 ൈ sin 36.8° ൌ 0 → ௬ܣ ൌ 203.1	݇ܰ							③ 

ܣ ൌ ටܣ௫ଶ  ௬ଶܣ ൌ 220.96	݇ܰ						③ 

ଵߪ ൌ
178	250	ܰ
967	݉݉ଶ ൌ ܽܲܯ	184.3 → ܨ ଵܵ ൌ

248
184.3

ൌ 1.34	 			③ 

߬ ൌ

178	250	ܰ
2

ߨ ቀ19	݉݉2 ቁ
ଶ ൌ ܽܲܯ	314.3 → ܵܨ ൌ

550
314.3

ൌ 1.75						③ 

߬ ൌ
220	960	ܰ

ߨ ቀ32	݉݉2 ቁ
ଶ ൌ ܽܲܯ	274.8 → ܵܨ ൌ

550
274.8

ൌ 2.0			 	③ 

ܣ	ݐ݁݇ܿܽݎܤ	ݐܽߪ ൌ
220	960	ܰ

30	݉݉	 ൈ 32	݉݉
ൌ 230.2 ܽܲܯ ④ 


