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CHAPTER	3:	TORSION	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

	 	

Introduction:	 In	 this	 chapter	 structural	 members	 and	
machine	 parts	 that	 are	 in	 torsion	will	 be	 considered.	 More	
specifically,	 you	 will	 analyze	 the	 stresses	 and	 strains	 in	
members	 of	 circular	 cross	 section	 subjected	 to	 twisting	
moments,	 or	 torques,	 T	 and	 T'.	 Members	 in	 torsion	 are	
encountered	 in	 many	 engineering	 applications.	 The	 most	
common	application	is	provided	by	transmission	shafts,	which	
are	used	to	transmit	power	from	one	point	to	another.	These	
shafts	can	be	solid	or	hollow.	

Analysis	of	Stress	and	Strain	

Now	 Consider	 a	 shaft	 AB	subjected	 at	 A	and	 B	 to	 equal	 and	
opposite	torques	T	and	T',	we	pass	a	section	perpendicular	to	
the	axis	of	the	shaft	through	some	arbitrary	point	C	as	shown.	
Based	on	the	free‐body	diagram	of	the	portion	BC	of	the	shaft	
and	equilibrium	we	have:	

݀ܶ ൌ ܨ݀	ݎ → 	ܶ ൌ නݎ	ܨ݀ ൌ න ܣ݀߬	ݎ


	

Also	 note	 that	 shear	 cannot	 take	 place	 in	 one	 plane	 only.	
Consider	the	very	small	element	of	shaft	shown.	We	know	that	
the	torque	applied	to	the	shaft	produces	shearing	stresses	τ	on	
the	 faces	 perpendicular	 to	 the	 axis	 of	 the	 shaft.	 But	 the	
conditions	 of	 equilibrium	 require	 the	 existence	 of	 equal	
stresses	on	the	faces	formed	by	the	two	planes	containing	the	
axis	of	the	shaft.	Such	shearing	stresses	occur	in	torsion	can	be	
demonstrated	by	considering	a	“shaft”	made	of	separate	slats	
pinned	at	both	ends	to	disks	as	shown	below.	If	markings	have	
been	 painted	 on	 two	 adjoining	 slats,	 it	 is	 observed	 that	 the	
slats	slide	with	respect	to	each	other	when	equal	and	opposite	
torques	are	applied	to	the	ends	of	the	shaft.	While	sliding	will	
not	 actually	 take	place	 in	 a	 shaft	made	
of	 a	 homogeneous	 and	 cohesive	
material,	 the	 tendency	 for	 sliding	 will	
exist,	 showing	 that	 stresses	 occur	 on	
longitudinal	planes	as	well	as	on	planes	
perpendicular	to	the	axis	of	the	shaft.	
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Now	consider	a	circular	shaft	that	is	attached	to	a	fixed	support	at	
one	 end.	 If	 a	 torque	T	 is	 applied	 to	 the	 other	 end,	 the	 shaft	will	
twist,	with	its	free	end	rotating	through	an	angle	φ	called	the	angle	
of	twist.	When	a	circular	shaft	is	subjected	to	torsion,	every	cross	
section	remains	plane	and	undistorted.	In	other	words,	while	the	
various	 cross	 sections	 along	 the	 shaft	 rotate	 through	 different	
amounts,	each	cross	section	rotates	as	a	solid	rigid	slab	(this	is	not	
the	case	for	a	shaft	with	square	cross	section	as	shown).	
We	 will	 now	 determine	 the	 distribution	 of	 shearing	 strains	 in	 a	
circular	 shaft	 of	 length	 L	 and	 radius	 c	 that	 has	 been	 twisted	
through	an	angle	φ.	Detaching	from	the	shaft	a	cylinder	of	radius	r,	
we	 consider	 the	 small	 square	 element	 formed	 by	 two	 adjacent	
circles	and	two	adjacent	straight	lines	traced	on	the	surface	of	the	
cylinder	before	any	 load	 is	applied.	As	 the	shaft	 is	subjected	to	a	
torsional	 load,	 the	 element	 deforms	 into	 a	 rhombus.	 Recall	 that	
the	shearing	strain	γ	in	a	given	element	is	measured	by	the	change	
in	the	angles	formed	by	the	sides	of	that	element.	Since	the	circles	
defining	 two	of	 the	 sides	of	 the	 element	 considered	here	 remain	
unchanged,	 the	 shearing	 strain	 γ	 must	 be	 equal	 to	 the	 angle	
between	lines	AB	and	A'B:	
	

߮ݎ ൌ ߛܮ → ߛ ൌ
߮ݎ
ܮ
→ ௫ߛ ൌ

ܿ߮
ܮ
→ ߛ ൌ

ݎ
ܿ
	௫ߛ

߬ ൌ ߛܩ → ߬ ൌ
ݎ
ܿ
߬௫	

ܶ ൌ න ܣ݀߬	ݎ


ൌ න 	ݎ
ݎ
ܿ
߬௫	݀ܣ ൌ

߬௫

ܿ
න ܣଶ݀ݎ


	

ܶ ൌ
߬௫

ܿ
ܬ → ߬௫ ൌ

ܶܿ
ܬ
→ ࣎ ൌ

࢘ࢀ
ࡶ
	

	

ܬ		:ݐ݂݄ܽݏ	݈݀݅ݏ	ݎ݂ ൌ
ߨ
2
ܿସ, ܬ		:ݐ݂݄ܽݏ	ݓ݈݈݄	ݎ݂ ൌ

ߨ
2
ሺܿସ െ ܿ

ସሻ	

߬ ൌ ߛܩ → ߛ ൌ
ݎܶ
ܬܩ
	ܽ݊݀	߮ ൌ

ߛܮ
ݎ
→ ࣐ ൌ

ࡸࢀ
ࡳࡶ
	

	

How	can	we	measure	G	by	a	
torsion	test?	
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Shaft	with	intermediate	torque 

߮ ൌ ߮/  ߮/߮/  ߮ ൌ
ܮܶ
ܩܬ
ሻ 

ܮܶ
ܩܬ
ሻ 

ܮܶ
ܩܬ
ሻ  0 

→ ߮ ൌ ܶܮ
ܩܬ





 

Shaft	with	Continuously	Varying	Loads	or	Dimensions	

݀߮ ൌ
ݔ݀ܶ
ܩܬ

											߮ ൌ න
ܶሺݔሻ݀ݔ
ሻݔሺܩሻݔሺܬ




 

Normal	Stress	in	Torsion	

Up	to	this	point,	our	analysis	of	stresses	in	a	shaft	has	been	
limited	to	shearing	stresses.	This	is	due	to	the	fact	that	the	
element	we	had	 selected	was	oriented	 in	 such	a	way	 that	
its	faces	were	either	parallel	or	perpendicular	to	the	axis	of	
the	 shaft.	 We	 know	 from	 earlier	 discussions	 that	 normal	
stresses,	 shearing	 stresses,	 or	 a	 combination	 of	 both	may	
be	 found	 under	 the	 same	 loading	 condition,	 depending	
upon	the	orientation	of	 the	element	that	has	been	chosen.	
Consider	the	stresses	and	resulting	forces	on	faces	that	are	
at	45°	to	the	axis	of	the	shaft	(no	shearing	force	acts	along	
DC):	

ܨ ൌ 2ሺ߬௫	ܣሻ cos 45 ° ൌ ߬௫ܣ√2	

ߪ ൌ
ܨ
ܣ
ൌ
߬௫ܣ√2

√2ܣ
ൌ ߬௫	

	
Failure	model	in	Ductile	and	Brittle	Materials	
Ductile	 materials	 generally	 fail	 in	 shear.	 Therefore,	 when	
subjected	to	torsion,	a	specimen	made	of	a	ductile	material	
breaks	along	a	plane	perpendicular	to	its	longitudinal	axis.	
On	the	other	hand,	brittle	materials	are	weaker	 in	tension	
than	in	shear.	Thus,	when	subjected	to	torsion,	a	specimen	
made	 of	 a	 brittle	 material	 tends	 to	 break	 along	 surfaces	
that	are	perpendicular	to	the	direction	in	which	tension	is	
maximum,	i.e.,	along	surfaces	forming	a	45ᴼ	angle	with	the	
longitudinal	axis	of	the	specimen.	
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Example	1:	Knowing	that	a	10	mm	diameter	
hole	is	drilled	through	AD,	determine	(a)	the	
shaft	 in	which	the	maximum	shearing	stress	
occurs,	(b)	the	magnitude	of	that	stress.	

 

TAB	

TBC	

TCD

Part	AB:	

↶ܶ ൌ 0 → ܶ െ 90	ܰ݉ ൌ 0 → 

ܶ ൌ 90	ܰ݉ 

߬୫ୟ୶	ሻ ൌ
ܶݎሻ௫

ܬ

ൌ
ሺ90	000	ܰ݉݉ሻሺ10	݉݉ሻ

ߨ
2 ሺ10

ସ െ 5ସሻ݉݉ସ

ൌ  ܽܲܯ	61.1

Part	BC:	

↶ܶ ൌ 0 → ܶ  270	ܰ݉ െ 90	ܰ݉ ൌ 0

→ 

ܶ ൌ െ180	ܰ݉ 

߬୫ୟ୶	ሻ ൌ
ܶݎሻ௫

ܬ

ൌ
ሺ180	000	ܰ݉݉ሻሺ10	݉݉ሻ

ߨ
2 ሺ10

ସ െ 5ସሻ݉݉ସ

ൌ  ܽܲܯ	122.2

 

Part	CD:	

↶ܶ ൌ 0 → ܶ െ 90	ܰ݉  270	ܰ݉

 110	ܰ݉ ൌ 0 → 

ܶ ൌ െ290	ܰ݉ 

߬୫ୟ୶	ሻ ൌ
ܶݎሻ௫

ܬ

ൌ
ሺ290	000	ܰ݉݉ሻሺ10	݉݉ሻ

ߨ
2 ሺ10

ସ െ 5ସሻ݉݉ସ

ൌ ܽܲܯ	196.9 →  ࢙
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Example	2:	 The	 aluminium	 rod	AB	(G	=	 27	
GPa)	 is	 bonded	 to	 the	 brass	 rod	BD	(G	=	39	
GPa).	 Knowing	 that	 portion	 CD	of	 the	 brass	
rod	 is	 hollow	 and	 has	 an	 inner	 diameter	 of	
40	mm,	determine	the	angle	of	twist	at	A.	

 

Statics:	

↷ܶ ൌ 0 → ܶ െ 800	ܰ݉ ൌ 0 → 

ܶ ൌ 800	ܰ݉ 

↷ܶ ൌ 0 → ܶ െ 800	ܰ݉ െ 1600	ܰ݉ ൌ 0

→ ܶ ൌ 2400	ܰ݉ 

↷ܶ ൌ 0 → ܶ െ 800	ܰ݉ െ 1600	ܰ݉ ൌ 0

→ ܶ ൌ 2400	ܰ݉ 

 

߮ ൌ ߮/  ߮/  ߮/  ߮ 

 

߮ ൌ
ܮܶ
ܩܬ
ሻ 

ܮܶ
ܩܬ
ሻ 

ܮܶ
ܩܬ
ሻ  0 

 

߮

ൌ
ሺ800	000	ܰ݉݉ሻሺ400	݉݉ሻ
ߨ
2 ሺ18

ସ	݉݉ସሻሺ27	000	ܽܲܯሻ


ሺ2400	000	ܰ݉݉ሻሺ375	݉݉ሻ
ߨ
2 ሺ30

ସ	݉݉ସሻሺ39	000	ܽܲܯሻ


ሺ2400	000	ܰ݉݉ሻሺ250	݉݉ሻ

ߨ
2 ሺ30

ସ െ 20ସ	݉݉ସሻሺ39	000	ܽܲܯሻ

ൌ 0.072ௗ  0.018ௗ  0.015ௗ ൌ 0.105ௗ

ൌ 6.02° 

 

TCD

TBC

TAB
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Example	 3:	 The	 shaft	 (G	 =	 80	 GPa)	 has	 a	
diameter	 of	 14	 mm,	 determine	 the	 angle	 of	
twist	at	B.	

	

↷ܶ ൌ 0 → ܶ െ 150	ܰ݉ ൌ 0	

→ ܶ ൌ 150	ܰ݉ 

↷ܶ ൌ 0 → ܶ െ 150	ܰ݉  280	ܰ݉ ൌ 0

→ ܶ ൌ െ130	ܰ݉ 

↷ܶ ൌ 0 → ܶ െ 150	ܰ݉  280	ܰ݉

 40	ܰ݉ ൌ 0 

→ ܶ ൌ െ170	ܰ݉ 

	

߮ ൌ ߮/  ߮/  ߮/  ߮ 

 

߮ ൌ
ܮܶ
ܩܬ
ሻ 

ܮܶ
ܩܬ
ሻ 

ܮܶ
ܩܬ
ሻ  0 

 

߮ ൌ
ሺ150	000	ܰ݉݉ሻሺ400	݉݉ሻ
ߨ
2 ሺ7

ସ݉݉ସሻሺ80	000	ܽܲܯሻ


ሺെ130	000	ܰ݉݉ሻሺ300	݉݉ሻ
ߨ
2 ሺ7

ସ݉݉ସሻሺ80	000	ܽܲܯሻ


ሺെ170	000	ܰ݉݉ሻሺ500	݉݉ሻ
ߨ
2 ሺ7

ସ݉݉ସሻሺ80	000	ܽܲܯሻ
 

ൌ 0.2ௗ െ 0.13ௗ െ 0.28ௗ ൌ െ0.21ௗ

ൌ െ12.1° ൌ 12.1° ↷ 

	

 

TBC

TCD	

TDA
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Example	 5:	 For	 the	 shaft	 and	 loading	
shown	(G=	75	GPa,	d	=	80	mm,	L	=	800	
mm)	determine	the	angle	of	twist	at	B.	
	
	

 

Example	4:	 For	 the	 given	 shaft	 and	 loading	
show	that:	

߮ ൌ
ݎሺ	ܮ2ܶ

ଶ  ݎݎ  ݎ
ଶሻ

ݎ	ܩߨ3
ଷݎ

ଷ 	

	

݀߮ ൌ
ݔ݀ܶ
ܩ௫ܬ

→ ߮ ൌ න
ݔ݀ܶ
ܩ௫ܬ




ൌ
ܶ
ܩ
න

ݔ݀
௫ܬ




	

௫ܬ ൌ
ߨ
2
௫ݎ						,௫ସݎ ൌ

ݎ െ ݎ
ܮ

ݔ  	ݎ

→ ߮ ൌ
ܶ
ܩ
න

ݔ݀
ߨ
2 ቀ
ݎ െ ݎ
ܮ ݔ  ቁݎ

ସ




	

߮ ൌ
ݎሺ	ܮ2ܶ

ଶ  ݎݎ  ݎ
ଶሻ

ݎ	ܩߨ3
ଷݎ

ଷ 	

݀߮ ൌ ௫ܶ݀ݔ
ܩܬ

→ ߮ ൌ න ௫ܶ݀ݔ
ܩܬ





ൌ
1
ܩܬ
න ௫ܶ݀ݔ ൌ




1

ቀ2ߨ 40
ସ݉݉ସቁ ሺ75	000	ܽܲܯሻ

න ሺ5000	ܰ݉݉/݉݉ ൈ ݔ݀	ሻݔ	




ൌ
5000		ܰ݉݉/݉݉

ቀ2ߨ 40
ସ݉݉ସቁ ሺ75	000	ܽܲܯሻ

න ሺݔሻ	݀ݔ ൌ




ሺ5000	ܰ݉݉/݉݉ሻሺ800	݉݉ሻଶ/2

ቀ2ߨ 40
ସ݉݉ସቁ ሺ75	000	ܽܲܯሻ

ൌ 0.0053ௗ ൌ 0.3°	
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Example	 6:	 The	 design	
of	 the	 gear‐and‐shaft	
system	 shown	 requires	
that	 steel	 shafts	 of	 the	
same	 diameter	 be	 used	
for	 both	AB	and	CD.	 It	 is	
further	required	that	τmax	
≤	 60	 MPa	 and	 that	 the	
angle	 φD	 through	 which	
end	D	of	 shaft	CD	rotates	
not	exceed	1.5°.	Knowing	
that	 G	 =	 77	 GPa,	
determine	 the	 required	
diameter	of	the	shafts.	
	

 

 ܶ ൌ 0 →	 ܶ െ ܨݎ ൌ 0							 ܶ ൌ 0 → ܶ െ ܨݎ ൌ 0 

→ ܶ ൌ
ݎ
ݎ

ܶ ൌ
100	݉݉
40	݉݉

ൈ 1000	ܰ݉ ൌ 2500	ܰ݉ 

Shear	stress	remaining	smaller	than	60	MPa:	

Maximum	shear	stress	occurs	in	shaft	AB	as	TAB>TCD	

߬௫ ൌ
ܶݎ
ܬ

 ܽܲܯ	60 →	

ሺ2500	000	ܰ݉݉ሻ	ݎ
ߨ
2 ݎ

ସ
 ܽܲܯ	60 → ݎ  29.82	݉݉	 → ݀  59.64	݉݉ 

Angle	of	twist	at	D	remaining	smaller	than	1.5°:	

߮ ൌ ߮/  ߮ →
ߨ1.5
180

ൌ ܶܮ
ܩܬ

 ߮  

ߨ1.5
180

ൌ ܶܮ
ܩܬ

 ߮ →
ߨ1.5
180

ൌ
ሺ1000	000	ܰ݉݉ሻሺ600	݉݉ሻ

ߨ
2 ݎ

ସ ൈ ܽܲܯ	000	77
 ߮  

0.02618 ൌ
4961
ସݎ

 ߮	ሺݓݐ	ݏݓ݊݇݊ݑ:  ሻ߮	݀݊ܽ	ݎ

߮ݎ ൌ ߮ݎ → ߮ ൌ
ݎ
ݎ
߮		ܽ݊݀	݈ܽݏ	߮ ൌ ߮/  ߮ ൌ

ܶܮ
ܩܬ

 

→ ߮ ൌ
ሺ2500	000	ܰ݉݉ሻሺ400	݉݉ሻ

ߨ
2 ݎ

ସ ൈ ܽܲܯ	000	77
→ ߮ ൌ

8268
ସݎ

→ ߮ ൌ
100 ݉݉
40 ݉݉

ൈ
8268
ସݎ

ൌ
20670
ସݎ

 

0.02618 ൌ
4961
ସݎ

 ߮ → 0.02618 ൌ
4961
ସݎ


20670
ସݎ

→ ݎ ൌ 31.45 ݉݉ → ݀  62.9	݉݉			ሺ࢙ሻ 
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Example	 7:	 Two	 solid	 steel	 shafts	 (G	 =	 77.2	 GPa)	 are	
connected	 to	 a	 coupling	disk	B	and	 to	 fixed	 supports	 at	A	
and	C.	For	the	loading	shown,	determine	(a)	the	reaction	at	
each	support,	(b)	the	maximum	shearing	stress	in	shaft	AB,	
(c)	the	maximum	shearing	stress	in	shaft	BC.	
	

ܶ ൌ 0 → ܶ  ܶ ൌ 1.4	݇ܰ݉	

	
The	system	is	statically	indeterminate.	
	
	
Compatibility	equation:	
	
߮ ൌ 0 → ߮/  ߮/  ߮ ൌ 0	
	
ܶܮ
ܩܬ

 ܶܮ
ܩܬ

 0 ൌ 0	

	

ܶ ൌ 0 → ܶ ൌ ܶ	

ܶ ൌ 0 → ܶ ൌ ܶ െ 1.4	݇ܰ݉	

	
	
ܶ ൈ 250	݉݉
ߨ
2 19

ସ

ሺ ܶ െ 1	400	000	ܰ݉݉ሻ ൈ 200	݉݉

ߨ
2 25

ସ
ൌ 0	

	
→ ܶ ൌ 294938	ܰ݉݉ ൌ 295	ܰ݉	
	
→ ܶ ൌ 1400	ܰ݉ െ 295	ܰ݉ ൌ 1105	ܰ݉	
	
→ ܶ ൌ ܶ ൌ 295	ܰ݉	
	
→ ܶ ൌ ܶ െ 1.4	݇ܰ݉ ൌ 295	ܰ݉ െ 1400	ܰ݉

ൌ	െ1105	ܰ݉	
	

߬௫ ൌ
ܶݎ
ܬ

ൌ
ሺ1105	000	ܰ݉݉ሻሺ25	݉݉ሻ

ߨ
2 25

ସ݉݉ସ
ൌ  ܽܲܯ	45

 

߬௫ ൌ
ܶݎ
ܬ

ൌ
ሺ295	000	ܰ݉݉ሻሺ19	݉݉ሻ

ߨ
2 19

ସ݉݉ସ
ൌ  ܽܲܯ	27.4

 

TA

TC

A

C

TBC	

TAB

TC

TC
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ܶ				:݉ݑ݅ݎܾ݈݅݅ݑݍܧ ൌ ܶ  ௌܶ ൌ 4	݇ܰ݉		ሺ1ሻ → ݕ݈݈ܽܿ݅ݐܽݐݏ ݁ݐܽ݊݅݉ݎ݁ݐ݁݀݊݅

Compatibility	equation:	

߮ ൌ ߮ௌ →
ܶܮ

ܩܬ
ൌ ௌܶܮ
ௌܩௌܬ

→ ܶ
ߨ
2 ሺ36

ସ െ 27ସሻ	݉݉ସ ൈ ܽܲܯ	000	27
ൌ ௌܶ
ߨ
2 ሺ27

ସሻ	݉݉ସ ൈ ܽܲܯ	000	77
→	

ௌܶ ൌ 1.32	 ܶ				ሺ2ሻ	

ሺଵሻௗ	ሺଶሻ
ሱۛ ۛۛ ۛۛ ሮۛ	 ܶ ൌ 1.72	݇ܰ݉					ܽ݊݀						 ௌܶ ൌ 2.27	݇ܰ݉	

	

Maximum	shear	stress	in	the	steel	core:	

߬ௌሻ௫ ൌ
ௌܶݎ௫

ௌܬ
ൌ
ሺ2.27 ൈ 10	ܰ݉݉ሻሺ27	݉݉ሻ

ߨ
2 ሺ27

ସሻ	݉݉ସ
ൌ 	ܽܲܯ	73.42

Maximum	shear	stress	in	the	Aluminium	jacket:	

߬ሻ௫ ൌ
ܶݎ௫

ܬ
ൌ
ሺ1.72 ൈ 10	ܰ݉݉ሻሺ36	݉݉ሻ

ߨ
2 ሺ36

ସ െ 27ସሻ	݉݉ସ
ൌ 	ܽܲܯ	34.3

The	angle	of	twist	at	A:	

߮ ൌ
ܶܮ

ܩܬ
ൌ

ሺ1.72 ൈ 10	ܰ݉݉ሻሺ25	00	݉݉ሻ
ߨ
2 ሺ36

ସ െ 27ସሻ	݉݉ସ ൈ 27 000 ܽܲܯ
ൌ 0.088ௗ ൌ 5.05°	

 

2.5	m	

Example	 8:	 A	 torque	 of	
magnitude	T	=	 4	 kNm	 is	 applied	
at	 end	 A	of	 the	 composite	 shaft	
shown.	 Knowing	 that	 the	
modulus	of	rigidity	 is	77	GPa	 for	
the	 steel	 and	 27	 GPa	 for	 the	
aluminum,	 determine	 (a)	 the	
maximum	 shearing	 stress	 in	 the	
steel	 core,	 (b)	 the	 maximum	
shearing	 stress	 in	 the	 aluminum	
jacket,	(c)	the	angle	of	twist	at	A.	
	

0	MPa

73.4	
MPa	

34.3	
MPa	

25.7	
MPa	
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TBR	1:	shafts	are	made	of	A‐36	steel	(G	
=	75	GPa).	Each	has	a	diameter	of	25	mm	
and	 they	 are	 connected	using	 the	 gears	
fixed	to	their	ends.	Their	other	ends	are	
attached	 to	 fixed	 supports	 at	 A	 and	 B.	
They	 are	 also	 supported	 by	 journal	
bearings	 at	 C	 and	 D,	 which	 allow	 free	
rotation	of	the	shafts	along	their	axes.	If	
a	torque	of	500	Nm	is	applied	to	the	gear	
at	 E	as	 shown,	 determine	 the	 reactions	
at	A	and	B	as	well	as	the	angle	of	twist	at	
E	(1390).	
Answer:	 TB	 =	 222.22	 Nm,	 TA=55.6	 Nm,	
φE=1.66°	

From	Statics	(equilibrium)	of	torques:	

ܶ	:ܧܣ ൌ 0 → െ ܶ  500 െ ܨாݎ ൌ 0			ሺ1ሻ 

ܶ	:ܨܤ ൌ 0 → ܶ െ ܨிݎ ൌ 0				ሺ2ሻ 

We	have	two	equations	three	unknowns	(TA,	TB,	and	F),	so	we	need	
a	compatibility	equation:	

ா߮ாݎ ൌ ி߮ிݎ → ாሺ߮ா/ݎ  ߮ሻ ൌ ிሺሺ߮ி/ݎ  ߮ሻ →	

ாݎ 	ቀ
்ಶಲಶಲ
ಶಲீಶಲ

 0ቁ=	ݎி 	ቀ
்ಷಳಷಳ
ಷಳீಷಳ

 0ቁ	

→ 100	݉݉	ሺ்ಲൈଵହ	

ீ
ሻ=	50	݉݉		ሺ்ಳൈହ	

ீ
ሻ →	

→ ܶ ൌ 4	 ܶ						ሺ3ሻ	

ሺଵሻ,ሺଶሻ,			ௗ	ሺଷሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮۛ 	 ܶ ൌ 55.6	ܰ݉, ܶ ൌ 222.22	ܰ݉	

߮ா ൌ ߮ா/  ߮ ൌ ߮ா/ ൌ
ாܶܮா
ாܩாܬ

ൌ ܶܮா
ாܩாܬ

ൌ
ሺ55600	ܰ݉݉ሻሺ1500	݉݉ሻ

ߨ
2 ሺ12.5	݉݉݉ሻ

ସሺ75	000	ܽܲܯሻ
ൌ ݀ܽݎ	0.029

ൌ 1.66°	
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	 	TBR	2:	shafts	(1)	and	(2)	have	a	
diameter	of	20	mm	and	shaft	(3)	
has	 a	 diameter	 of	 25	 mm.	 The	
supports	 allow	 free	 rotation	 of	
the	 shafts	 along	 their	 axes.	
Determine	 the	 maximal	 shear	
stress	 in	 shaft	 (1).	 Also,	 find	
rotation	 of	 gears	 C	 and	 E.	
Assume	that	G	=	80	GPa	and	L	=	
400	mm	(1391).	
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TBR	 3:	 Find	 the	 maximal	
shear	 stress	 in	 shafts	 (1)	 and	
(3)	as	well	as	rotation	of	gears	
C	and	E	(1392).		 	

 

ܶ െ ܨ ൈ ݎ െ ܶ ൌ 0		ሺ݉ݑ݅ݎܾ݈݅݅ݑݍܧ	݂	ݐ݂݄ܽݏ  ,ሻܥܤܣ ܶ െ ܨ ൈ ாݎ ൌ 0 ሺ݉ݑ݅ݎܾ݈݅݅ݑݍܧ	݂	ݐ݂݄ܽݏ ሻܧܦ

→ ܶ െ ܶ

ܶ
ൌ
ݎ
ாݎ
ൌ
54
42

ൌ 1.286 → 		
460 െ ܶ

ܶ
ൌ 1.286 → 1.286 ܶ  ܶ ൌ 460	ܰ݉			ሺ1ሻ 

→ :݁ݐܽ݊݅݉ݎ݁ݐ݁݀݊݅	ݕ݈݈ܽܿ݅ݐܽݐܵ ሺ	ݏ݊ݓ݊݇݊ݑ	2 ܶ	ܽ݊݀	 ܶሻ: Compatibility	Equations:	

߮ݎ ൌ ா߮ாݎ → ሺ߮/ݎ  ߮ሻ ൌ ாሺ߮ா/ݎ  ߮ሻ
ఝಲୀఝವୀ
ሱۛ ۛۛ ۛۛ ሮۛ ሺ߮/ሻݎ ൌ 	ாሺ߮ா/ሻݎ

ሺݎ
ܶܮ
ܩܬ

ሻ ൌ ாሺݎ
ܶாܮா
ாܩாܬ

ሻ → ሺݎ
ܶܮ

ܩܬ
ሻ ൌ ாሺݎ

ܶܮா
ாܩாܬ

ሻ
ಲಳୀವಶ	ௗ	ீಲಳୀீವಶ	
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ሺݎ

ܶ

ܬ
ሻ ൌ ாሺݎ

ܶ

ாܬ
ሻ	

54൮ ܶ

	ߨ ቀ352 ቁ
ସ൲ ൌ 42൮ ܶ

	ߨ ቀ252 ቁ
ସ൲ → ܶ ൌ 2.988	 ܶ		ሺ2ሻ

ሺଵሻௗ	ሺଶሻ
ሱۛ ۛۛ ۛۛ ሮۛ 	 ܶ ൌ 107.6	ܰ݉, 	 ܶ ൌ 321.6	ܰ݉					

߬ଵ ൌ
321.6 ൈ 10ଷܰ݉݉ ൈ 35

2 ݉݉

ߨ
2 ቀ
35
2 ݉݉ቁ

ସ ൌ ,ܽܲܯ	38.2 ߬ଶ ൌ
107.6 ൈ 10ଷܰ݉݉ ൈ 25

2 ݉݉

ߨ
2 ቀ
25
2 ݉݉ቁ

ସ ൌ 	ܽܲܯ	35.1

߮ா ൌ ߮ா/  ߮ ൌ ߮ா/ ൌ
ܶாܮா
ாܩாܬ

ൌ ܶܮா
ாܩாܬ

ൌ
ሺ107.6 ൈ 10ଷ	ܰ݉݉ሻ	ሺ400	݉݉ሻ

ߨ
2	ቀ

25
2 ቁ

ସ

ൈ ܽܲܯ	28000
ൌ ݀ܽݎ	0.04 ൌ 2.3°	

߮ ൌ ߮/  ߮/  ߮ ൌ ߮/  ߮/ ൌ
ܶܮ
ܩܬ

 ܶܮ
ܩܬ

ൌ
ሺ460	000	ܰ݉݉ሻሺ200	݉݉ሻ

ߨ
2	ቀ

35
2 ቁ

ସ

ൈ ܽܲܯ	28000

ሺ321.6 ൈ 10ଷ	ܰ݉݉ሻሺ400	݉݉ሻ

ߨ
2 ቀ352 ቁ

ସ

ൈ 28000 ܽܲܯ
ൌ ݀ܽݎ	0.0535 ൌ 3.06° 
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TBR	4:	For	 the	 gear	 system	 shown	 find	maximal	T0	 so	 that	maximal	 shear	 stress	 in	 the	 thin‐
walled	shaft	AB	remains	smaller	than	40	MPa.	Based	on	the	calculated	T0	determine	rotations	of	
N	and	M	as	well	as	maximal	stress	in	shoft	CD	(G=	60	GPa)	(1393).	

	

	

	

	

	

	

	

	

	

	

ܶ െ ܨ400 െ ܶ ൌ 0						② 

ܨ200 െ ܶ ൌ 0						② 

→ 2 ܶ  ܶ ൌ ܶ		ሺ1ሻ				ܵݕ݈݈ܽܿ݅ݐܽݐ	݁ݐܽ݊݅݉ݎ݁ݐ݁݀݊ܫ								① 

:ݕݐ݈ܾ݅݅݅ݐܽ݉ܥ 400 ൈ ߮ெ ൌ 200 ൈ ߮ே → ߮ே ൌ 2߮ெ					②					 →
ܮܶ
ܩܬ
ሻ ൌ 2 ൈ

ܮܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
ሻ 

→ ܶሺ1000	݉݉ሻ
ߨ
2 ሺ45	݉݉ሻ

ସ ൈ ܽܲܯ	000	60
ൌ 2 ൈ ܶሺ1200	݉݉ሻ

4 ൈ 3600ଶ݉݉ଶ ൈ ܽܲܯ	000	60
൬
4 ൈ 60	݉݉
5	݉݉

൰ 								⑧ 

0.000155	 ܶ ൌ 0.002222	 ܶ → ܶ ൌ 14.31	 ܶ			ሺ2ሻ					① 

ሺ1ሻ	ܽ݊݀	ሺ2ሻ 		→ ܶ ൌ 0.03375	 ܶ								 ܶ ൌ 0.483	 ܶ								② 

߬ ൌ
ܶ

തതതݐܣ2
→ ܽܲܯ	40 ൌ 	

0.03375 ܶ

2	ሺ3600	݉݉ଶሻሺ5	݉݉ሻ
→ ܶ ൌ 42	663	978	ܰ݉݉ ൌ 42.6	݇ܰ݉								④ 

߬ ൌ
ܶݎ
ܬ

ൌ
0.483 ൈ 42	663	978	ܰ݉݉ ൈ 45	݉݉

ߨ
2 ሺ45	݉݉ሻ

ସ
ൌ ே߮			②					ܽܲܯ	144 ൌ

ܶ	ሺ1000	݉݉ሻ
ߨ
2 ሺ45	݉݉ሻ

ସ ൈ ܽܲܯ	000	60

ൌ ݀ܽݎ	0.0533 ൌ 3.05°,			߮ெ ൌ
߮ே
2
ൌ 1.52°				① 

Y 

Y 

x 

(c)  view Y-Y 

 90 mm 

(b)  view X-X 

1.0 m 

B 

Hollow Shaft 

(a) 

N (rN = 200 mm) 

M (rM = 400 mm) 

A X 

D

1.2 m 

Solid Shaft 

X 

To 

 t = 5 mm 

C 

60 mm 

60 mm  
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Design	of	Transmission	Shafts	

	

	

	

	

	

	

	

	

	

	

Stress	Concentration	in	Circular	Shaft	

	

	

	

	

	

	

	

	

	

	

	 	

	 	

 

The	 principal	 specifications	 to	 be	 met	 in	
the	design	of	a	 transmission	shaft	are	the	
power	to	 be	 transmitted	 and	 the	 speed	of	
rotation	 of	 the	 shaft.	 The	 role	 of	 the	
designer	 is	 to	 select	 the	material	 and	 the	
dimensions	 of	 the	 cross	 section	 of	 the	
shaft,	 so	 that	 the	 maximum	 shearing	
stress	allowable	in	the	material	will	not	be	
exceeded	 when	 the	 shaft	 is	 transmitting	
the	required	power	at	the	specified	speed.

To	determine	the	torque	exerted	on	the	shaft,	we	recall	from	elementary	dynamics	that	the	power	P	
associated	with	the	rotation	of	a	rigid	body	subjected	to	a	torque	T	is:	

ܲ ൌ ܶ߱	
(Watt)	=	(N.m)(rad/sec)	

߱ ൌ 	݂ߨ2
where	f	is	frequency	of	rotation	and	its	unit	is	1/sec	or	Hz	

→ ܲ ൌ ݂ܶߨ2 → ܶ ൌ
ܲ
݂ߨ2

∴ ߬௫ ൌ
ܶܿ
ܬ
→ ܶ ൌ

௫߬ܬ

ܿ
	

 

ࡷ ൌ
࢞ࢇ࣎
/ࢊࢀ
ࡶ
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Example	9:	 The	 stepped	 shaft	 shown	must	
transmit	 40	 kW	 at	 a	 speed	 of	 720	 rpm.	
Determine	the	minimum	radius	r	of	the	fillet	
if	an	allowable	stress	of	36	MPa	is	not	 to	be	
exceeded.	
	
ܲ ൌ 40	ܹ݇,߱ ൌ 	݉ݎ	720

→ ܶ ൌ
ܲ
߱
ൌ

ݐݐܹܽ	000	40

720 ൈ 60ߨ2
݀ܽݎ
ܿ݁ݏ 	

ൌ 530.52	ܰ݉	

	

ܭ ൌ
߬௫

ܶ݀
2
ܬ

ൌ
ܽܲܯ	36

ሺ530.52 ൈ 10ଷ	ܰ݉݉ሻ ቀ45	݉݉2 ቁ

ߨ
2 ቀ
45	݉݉
2 ቁ

ସ

ൌ 1.21 → ܭ ൌ 1.21 ܽ݊݀
ܦ
݀
ൌ 2 

→ ݄ܽݎ݃	݄݁ݐ	݉ݎ݂ →
ݎ
݀
≅ 0.25 → ݎ ൌ 0.25 ݀ ൌ 0.25 ሺ45 ݉݉ሻ ൌ 10.8 ݉݉ 
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Torsion	of	Noncircular	Members	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

 

An	 important	 feature	 of	 the	 torsional	
deformation	 of	 noncircular	 prismatic	 bars	 is	
the	wraping	of	the	cross	sections.	The	theory	
of	elasticity	may	be	used	to	relate	the	torque	
applied	 to	 such	 noncircular	 prismatic	
members	 to	 the	 resulting	 stress	 distribution	
and	angle	of	twist.	

For	 thin‐walled	open‐section	members	 of	uniform	 thickness	 (as	 those	 shown	 above)	 the	 same	
formulation	 can	 be	 used	 to	 determine	 maximal	 stress	 and	 angle	 of	 twist. Maximal	 stress	 is	
approximately	the	same	over	the	long side	surfaces except	in	the	vicinity	of	the	short	sides.	

 

߬௫ ൌ
ܶ

ܿଵܾܽଶ
			ܽ݊݀				߮ ൌ

ܮܶ
ܿଶܾܽଷܩ

 

ܿଵ ൌ ܿଶ ൌ
1
3
൬1 െ 0.63

ܾ
ܽ
൰ 	ݎ݂		

ܽ
ܾ
 5 

x	

L	
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Example	 10:	 Segments	 AB	 and	 BC	 of	
the	 shaft	 have	 circular	 and	 square	
cross	sections,	respectively.	The	shaft	is	
made	 from	 A‐36	 steel	 (G	 =	 75	 GPa)	
with	an	allowable	shear	stress	of	߬ ൌ
	of	angle	an	and	ܽܲܯ	75 twist	at	end	A	
which	 is	 not	 allowed	 to	 exceed	 0.02	
rad.	Determine	the	maximum	allowable	
torque	T	 that	 can	be	applied	at	 end	A.	
The	shaft	is	fixed	at	C.	

Maximum	shear	stress	in	shaft	AB:	

߬௫ ൌ
ܶݎ
ܬ

→ ܽܲܯ	75 ൌ
ܶ	ሺ30	݉݉ሻ
ߨ
2 30

ସ	݉݉ସ
→ ܶ ൌ 3	180	860	ܰ݉݉ 

→ ܶ ൌ 3.18	݇ܰ݉ 

 

Maximum	shear	stress	in	shaft	BC:	

߬௫ ൌ
ܥܤܶ
ܿ1ܾܽ

2 ,					ܽ ൌ ܾ ൌ 90	݉݉ →
ܽ
ܾ
ൌ 1 → ܿ1 ൌ 0.208		ܽ݊݀		ܿ2 ൌ 0.1406 

→ ߬௫ ൌ
ܥܤܶ
ܿ1ܾܽ

2 → ܽܲܯ	75 ൌ
ܶ

0.208 ൈ 90	݉݉ൈ 902	݉݉2		
 

→ ܶ ൌ 11	372	400	ܰ݉݉ ൌ 11.37	݇ܰ݉ 

 

Maximum	angle	of	twist	at	A:	

߮ ൌ ߮/  ߮/  ߮ → 0.02 ൌ ܶܮ
ܩܬ


ܥܤܮܥܤܶ
ܿ2ܾܽ

ܩ3
 0 

→ 0.02 ൌ
ܶ	ሺ600	݉݉ሻ

ߨ
2 30

ସ	݉݉ସ ൈ ܽܲܯ	000	75


ܶ	ሺ600	݉݉ሻ
0.1406 ൈ 90	݉݉ ൈ 90ଷ݉݉ଷ ൈ ܽܲܯ	000	75

 

→ ܶ ൌ 2	795	311	ܰ݉݉ → ܶ ൌ 2.79	݇ܰ݉		ሺ࢙࢚࢘ࢉሻ 
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Example	11:	A	3‐m‐long	steel	angle	has	an	L203	
×	152	×	12.7	cross	section.	From	Table	below	we	
find	 that	 the	 thickness	of	 the	section	 is	12.7	mm	
and	that	its	area	is	4350	mm2.	Knowing	that	τall	=	
50	MPa	 and	 that	G	=	77.2	GPa,	 and	 ignoring	 the	
effect	of	stress	concentrations,	determine	(a)	the	
largest	 torque	 T	 that	 can	 be	 applied,	 (b)	 the	
corresponding	angle	of	twist.	

 

߬௫ ൌ
ܶ

ܿଵܾܽଶ
→ ܽܲܯ	50 ൌ

ܶ
ܿଵܾܽଶ

 

ܾ ൌ ܣ			݀݊ܽ				݉݉	12.7 ൌ ܾܽ → 4350	݉݉ଶ ൌ ܽ	ሺ12.7	݉݉ሻ → ܽ ൌ 342.52	݉݉ 

→
ܽ
ܾ
ൌ
342.52
12.7

ൌ 26.97  5 → 	 ܿଵ ൌ ܿଶ ൌ
1
3
൬1 െ 0.63

ܾ
ܽ
൰ ൌ

1
3
൬1 െ 0.63

12.7	݉݉
342.52	݉݉

൰ ൌ 0.325 

→ ܽܲܯ	50 ൌ
ܶ

ܿଵܾܽଶ
→ ܽܲܯ	50 ൌ 	

ܶ
0.325 ൈ 342.52	݉݉ ൈ 12.7ଶ	݉݉ଶ → ܶ ൌ 899	242	ܰ݉݉ 

 

߮ ൌ
ܮܶ

ܿଶܾܽଷܩ
ൌ

899242	ܰ݉݉	 ൈ 3000	݉݉
0.325 ൈ 342.52	݉݉ ൈ 12.7ଷ	݉݉ଷ ൈ ܽܲܯ	200	77

ൌ 0.1532ௗ ൌ 8.78° 
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Example	 12:	 A	 2.4‐m‐long	 steel	 member	 (G	 =	 77	 GPa)	 has	 a	
W200×46.1	cross	section.	Knowing	that	T	=	560	Nm	determine	(a)	
maximum	 shearing	 stress	 along	 lines	 a‐a	 and	 b‐b	 as	 well	 as	 the	
angle	of	twist.		

 

From	Appendix	C	for	the	flanges:	b	=	11	mm	and	a	=	203	mm	so	we	have	a/b	=	18.45	>	5		

ܿଵ ൌ ܿଶ ൌ
1
3
൬1 െ 0.63

ܾ
ܽ
൰ ൌ

1
3
൬1 െ 0.63

11 ݉݉
203	݉݉

൰ ൌ 0.322	

௪ܶ  2 ܶ ൌ 560	ܰ݉ 

From	Appendix	C	for	the	web:	b	=	7.2	mm	and	a	=	d‐2	tf	=203‐2(11)	=	181	mm,	a/b	=	25.14	>	5		

ܿଵ ൌ ܿଶ ൌ
1
3
൬1 െ 0.63

ܾ
ܽ
൰ ൌ

1
3
൬1 െ 0.63

7.2	݉݉
181	݉݉

൰ ൌ 0.325	

The	system	is	statically	indeterminate	so	we	need	a	compatibility	equation:	߮ ൌ ߮௪ →	

ܶܮ
ሺܿଶܾܽଷܩሻ

ൌ ௪ܶܮ௪
ሺܿଶܾܽଷܩሻ௪

→ ܶ ൌ 3.96 ௪ܶ → ܶ ൌ 248.61	ܰ݉	ܽ݊݀	 ௪ܶ ൌ 62.78	ܰ݉ 

߬ ൌ
ܶ

ሺܿଵܾܽଶሻ
ൌ

248.61 ൈ 10ଷ	ܰ݉݉
0.322 ൈ 203	݉݉ ൈ 11ଶ	݉݉ଶ ൌ  ܽܲܯ	31.43

߬௪ ൌ ௪ܶ

ሺܿଵܾܽଶሻ௪
ൌ

62.78 ൈ 10ଷ	ܰ݉݉
0.325 ൈ 181	݉݉ ൈ 7.2ଶ	݉݉ଶ ൌ  ܽܲܯ	20.58

߮ ൌ ߮௪ ൌ 0.089ௗ ൌ 5.1° 
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Example	13:	A	hollow	tube	with	radial	 fins	
is	subjected	to	a	torque	T	=	2	kNm.	Find	the	
torque	 transmitted	 to	 the	 fins	 and	 the	
maximum	shear	stress.		
	
	
ܶ ൌ 2	݇ܰ݉ ൌ ଵܶ  8	 ଶܶ					ሺ1ሻ			
→ 	݁ݐܽ݊݅݉ݎ݁ݐ݁݀݊݅	ݕ݈݈ܽܿ݅ݐܽݐݏ
	
Compatibility	equation:	
	
߮௧௨ ൌ ߮௦	
ଵܶܮ
ܩଵܬ

ൌ ଶܶܮ
ܿଶܾܽଷܩ

	݁ݎ݄݁ݓ		
ܽ
ܾ
ൌ
38
6
 5	

	

ܿଵ ൌ ܿଶ ൌ
1
3
൬1 െ 0.63

ܾ
ܽ
൰

ൌ
1
3
൬1 െ 0.63

6	݉݉
38	݉݉

൰

ൌ 0.300	
ଵܶܮ
ܩଵܬ

ൌ ଶܶܮ
ܿଶܾܽଷܩ

→ ଵܶ
ߨ
2 ሺ41

ସ െ 35ସሻ

ൌ ଶܶ

0.3 ൈ 38 ൈ 6ଷ
→	

ଵܶ ൌ 845.3	 ଶܶ						ሺ2ሻ	
ଶܶ ൌ 2.34	ܰ݉, ଵܶ ൌ 1981.25	ܰ݉	
	
The	fins	carry	less	than	1%	of	the	torque.	
	

߬௧௨ ൌ
ଵܶݎ
ܬ

ൌ
ሺ1981.25 ൈ 10ଷ	ܰ݉݉ሻሺ41	݉݉ሻ

ߨ
2 ሺ41

ସ െ 35ସሻ

ൌ 	ܽܲܯ	39
	

߬ ൌ
ଶܶ

ܿଵܾܽଶ
ൌ
2.34 ൈ 10ଷܰ݉݉
0.3 ൈ 38 ൈ 6ଶ

ൌ 	ܽܲܯ	5.71
	
→ ߬௫ ൌ 	ܽܲܯ	39
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Thin‐walled	Hollow	Shafts	(noncircular	closed	section)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

As	 indicated	 the	 determination	 of	 stresses	 in	 noncircular	
members	generally	requires	the	use	of	advanced	mathematical	
methods.	 In	 the	 case	of	 thin‐walled	hollow	noncircular	 shafts	
(such	 as	 light‐weighted	 frameworks	 in	 aircrafts	 and	
spacecraft),	however,	a	good	approximation	of	the	distribution	
of	 stresses	 in	 the	 shaft	 can	 be	 obtained	 by	 a	 simple	
computation.	 Consider	 a	 hollow	prismatic1	 cylindrical	 (cross	
section	 does	 not	 vary	 along	 the	 length	 of	 the	 member)	
member	of	noncircular	closed2	section	subjected	to	a	torsional	
loading.	While	 the	 thickness	 t	of	 the	wall	may	vary	within	a	
transverse	section3,	 it	will	be	assumed	that	 it	remains	small	
compared	 to	 the	other	dimensions4	 of	 the	 member.	 As	 t	 is	
small	 we	 can	 assume	 that	 shear	 stress	 remains	 constant	
through	wall	 thickness5.	 We	 now	 detach	 from	 the	 member	
the	portion	of	wall	AB	bounded	by	two	transverse	planes	at	a	
distance	 ∆x	 from	 each	 other,	 and	 by	 two	 longitudinal	 planes	
perpendicular	to	the	wall.	Considering	equilibrium:	

ܨ ൌ ܨ → ߬ሺݐ∆ݔሻ ൌ ߬ሺݐ∆ݔሻ → ߬ݐ ൌ ߬ݐ ൌ ݐ߬ ൌ ݐ݊ܽݐݏ݊ܿ
ൌ  ݍ

q	is	called	shear	flow.	

We	 now	 detach	 a	 small	 element	 from	 the	 wall	 portion	 AB.	
Since	the	upper	and	lower	faces	of	this	element	are	part	of	the	
free	surface	of	the	hollow	member,	the	stresses	on	these	faces	
are	 equal	 to	 zero.	 It	 follows	 that	 the	 stress	 components	
indicated	 on	 the	 other	 faces	 by	 dashed	 arrows	 are	 also	 zero,	
while	 those	 represented	by	solid	arrows	are	equal.	Thus,	the	
shearing	 stress	at	any	point	of	a	 transverse	 section	of	 the	
hollow	member	is	parallel	to	the	wall	surface6.	

We	will	now	derive	a	relation	between	the	torque	T	applied	to	
a	hollow	member	and	the	shear	flow	q	in	its	wall:	

ܨ݀ ൌ ܣ݀	߬	 ൌ ߬ሺݐ ൈ ሻݏ݀ ൌ ሺ߬ݐሻ݀ݏ ൌ 	ݏ݀	ݍ

݀ܶ ൌ ܨ݀ ൌ ሻݏ݀	ݍሺ	 ൌ ሻݏ݀	ሺݍ ൌ 	ሻܣሺ2݀̅ݍ

ܶ ൌ ර݀ܶ ൌ රݍሺ2݀̅ܣሻ ൌ ܣ̅ݍ2 → ݍ ൌ
ܶ

ܣ2̅
	

߬ ൌ
ݍ
ݐ
→ ࢍ࢜ࢇ࣎ ൌ

ࢀ
ഥ࢚

		

This	 is	average	shear	stress	as	 it	 is	based	on	assumption	that	
shear	 stress	 does	 not	 vary	 across	 wall	 thickness.	 Maximal	
shear	stress	occurs	where	t	is	minimal.

 

O	is	an	
arbitrary	
point	
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	average	it	call	We	tube.	the	of	thickness	particular	a	over	acting	stress	shear	average	the	=	ࢍ࢜ࢇ࣎
stress	as	we	assumed	that	shear	stress	remains	constant	through	wall	thickness.	
T	=	the	resultant	internal	torque	at	the	cross	section	
t	=	the	thickness	of	the	tube	where	ࢍ࢜ࢇ࣎	is	to	be	determined	
		.thickness	tube’s	the	of	centerline	the	of	boundary	the	within	enclosed	area	mean	the	=	ഥ
	
Angle	of	Twist	
The	angle	of	twist	of	a	thin‐walled	tube	of	length	L	can	be	determined	using	energy	methods	(we	
will	see	it	in	Strength	of	Materials	II).	If	the	material	behaves	in	a	linear	elastic	manner	and	G	is	
the	shear	modulus,	then	this	angle	(࣐),	given	in	radians,	can	be	expressed	as:	
	

࣐ ൌ
ࡸࢀ
ഥࡳ

ර
࢙ࢊ
࢚
	

 
Here	the	integration	must	be	performed	around	the	entire	boundary	of	the	tube’s	cross‐sectional	
area	(see	the	example	below).	If	t	remains	constant	through	the	section	then	we	can	write:	
࣐ ൌ

ࡸࢀ
ഥࡳ

ර
࢙ࢊ
࢚
ൌ

ࡸࢀ
ഥ࢚ࡳ

ර࢙ࢊ ൌ
ࡿࡸࢀ
ഥ࢚ࡳ

	

	
where	S	is	the	length	of	the	centerline.	
	

	

	 	

 

Example	 14:	 A	 torque	 T	 =	 5	
kNm	 is	 applied	 to	 a	 hollow	
shaft	 having	 the	 cross	 section	
shown.	Determine	the	shearing	
stress	 at	 points	 a	 and	 b.	 Find	
angle	of	twist	if	L	=	2	m	and	G	=	
77	GPa.		
	
ܣ̅ ൌ ሺ125 െ 2 ൈ 5ሻ

ൈ ሺ75 െ 2 ൈ 3ሻ
ൌ 7935	݉݉ଶ	

߬ ൌ
ܶ

ݐܣ2̅

ൌ
5	000	000	ܰ݉݉

2 ൈ 7935	݉݉ଶ ൈ 6	݉݉
ൌ 	ܽܲܯ	52.5

߬ ൌ
ܶ

ݐܣ2̅

ൌ
5	000	000	ܰ݉݉

2 ൈ 7935	݉݉ଶ ൈ 10	݉݉
ൌ 	ܽܲܯ	31.5

	

߮ ൌ
ܮܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
ൌ
ሺ5 ൈ 10	ܰ݉݉ሻሺ2000 ݉݉ሻ
4ሺ7935	݉݉ଶሻଶሺ77000 ሻܽܲܯ

൬2 ൈ
125 െ 10

6
 2 ൈ

75 െ 6
10

൰ ൌ ݀ܽݎ	0.0269 ൌ 1.5°	
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TBR	5	(1390):	A	shaft	has	the	cross	section	
shown	 and	 is	 made	 of	 2014‐T6	 aluminium	
alloy	(G	=	27	GPa)	having	an	allowable	shear	
stress	 of	τall=	125	MPa.	 If	 the	 angle	 of	 twist	
per	 meter	 length	 is	 not	 allowed	 to	 exceed	
0.03	 rad,	 determine	 the	 required	minimum	
wall	 thickness	 t	when	 the	 shaft	 is	 subjected	
to	a	torque	of	T	=	15	kNm.	
	

ܣ̅ ൌ
75

tan 30°
ൈ
150
2


ߨ
2
75ଶ ൌ 18578.51	݉݉ଶ	

߬ ൌ
ܶ

ݐܣ2̅
→ ܽܲܯ	125 ൌ

15	000	000	ܰ݉݉
2 ൈ 18578.51	݉݉2 ൈ ݐ

	

→ ݐ ൌ 3.22	݉݉	

	
߮ ൌ

ܮܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
	

Example	 15:	 A	 90‐Nm	 torque	 is	 applied	 to	 a	
hollow	 shaft	 having	 the	 cross	 section	 shown.	
Determine	the	shearing	stress	at	points	a	and	b.	
	

ܣ̅ ൌ 2 ൈ 39 ൈ 13  13 ൈ 13 
ߨ
4
39ଶ ൌ 2377.6	݉݉ଶ	

	

߬ ൌ
ܶ

ݐܣ2̅
ൌ

90	000	ܰ݉݉
2 ൈ 2377.6	݉݉ଶ ൈ 4	݉݉

ൌ 	ܽܲܯ	4.73

	

߬ ൌ
ܶ

ݐܣ2̅
ൌ

90	000	ܰ݉݉
2 ൈ 2377.6	݉݉ଶ ൈ 2	݉݉

ൌ 	ܽܲܯ	9.46

߮ ൌ
ܮܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
ൌ

ܮܶ
ܩଶܣ4̅

ሾ2 ൬
52
4
൰  2 ൬

13
2
൰ 

ሺ39ሻ/4ߨ2
2

ሿ	

	

→
߮
ܮ
ൌ

ܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
→

0.03
1000	݉݉

ൌ
15 000 000 ܰ݉݉

4൫18578.51 ݉݉2൯
ଶ
ሺ27 000 ሻܽܲܯ

൮

2ൈ 75 ݉݉
sin30°  ൈߨ 75	݉݉

ݐ ൲	

→ ݐ ൌ 7.18	݉݉	ሺܿݏ݈ݎݐ݊ሻ	
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r1	
r2

Example	 16:	 Calculate	
shear	 stress	 at	 mid‐
thickness	and	 the	angle	of	
twist	 from	 elastic	 torsion	
formula	 and	 once	 from	
thin‐walled	theory.	

Elastic	torsion	formula	(stress):	

߬ଵ ൌ
ܶ	ሺݎଵ  ଶݎ

2 ሻ
ߨ
2 ሺݎଶ

ସ െ ଵݎ
ସሻ
ൌ

ܶሺݎଵ  ଶሻݎ
ଶݎሺߨ

ଶ  ଵݎ
ଶሻሺݎଶ െ ଶݎଵሻሺݎ  ଵሻݎ

 

→ ߬ଵ ൌ
ܶ

ଶݎሺߨ
ଶ  ଵݎ

ଶሻݐ
	ሺ݁ݐܿܽݔ	݊݅ݐݑ݈ݏሻ 

Thin‐walled	formula	(stress):	

߬ଶ ൌ
ܶ
ݐܣ2̅

ൌ
ܶ

ߨ2 ቀݎଵ  ଶݎ
2 ቁ

ଶ
ݐ
ൌ

2ܶ
ଵݎሺߨ  ݐଶሻଶݎ

	ሺ݊ݐ	݄݁ݐ	ݐܿܽݔ݁	݊݅ݐݑ݈ݏሻ 

If	the	shaft	is	thin‐walled	we	have:	ݎଵ ൌ 	:ଶݎ

߬ଵ ൌ
ܶ

ଶݎሺߨ
ଶ  ଵݎ

ଶሻݐ
ൌ

ܶ
ଵݎߨ2

ଶݐ
	ܽ݊݀	߬ଶ ൌ

2ܶ
ଵݎሺߨ  ݐଶሻଶݎ

ൌ
2ܶ

ଵݎሺ4ߨ
ଶሻݐ

ൌ
ܶ

ଵݎߨ2
ଶݐ
→ 	 ߬ଵ ൌ ߬ଶ 

For	very	thin‐walled	shafts	the	thin‐walled	formula	gives	the	exact	solution	and	becomes	
equal	to	the	elastic	formula	

	

Elastic	torsion	formula	(angle	of	twist):	

߮ଵ ൌ
ܮܶ
ܩܬ

ൌ
ܮܶ

ߨ
2 ሺݎଶ

ସ െ ଵݎ
ସሻܩ

ൌ
ܮ2ܶ

ଶݎሺߨ
ଶ  ଵݎ

ଶሻሺݎଶ െ ଶݎଵሻሺݎ  ܩଵሻݎ
ൌ

ܮ2ܶ
ଶݎሺߨ

ଶ  ଵݎ
ଶሻሺݎଶ  ܩݐଵሻݎ

	

߮ଶ ൌ
ܮܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
ൌ

ܮܶ

ଶߨ4 ቀݎଵ  ଶݎ
2 ቁ

ସ
ܩ
ቌ
ଵݎሺߨ2  ଶݎ

2 ሻ

ݐ
ቍ ൌ

ܮ4ܶ
ଵݎሺߨ  ܩݐ	ଶሻଷݎ

	

If	the	shaft	is	thin‐walled	we	have:	ݎଵ ൌ 	:ଶݎ

߮ଵ ൌ
ܮ2ܶ

ଶݎሺߨ
ଶ  ଵݎ

ଶሻሺݎଶ  ܩݐଵሻݎ
ൌ

ܮܶ
ଵݎߨ2

ଷܩݐ
ܽ݊݀ ߮ଶ ൌ

ܮ4ܶ
ଵݎሺߨ  ଶሻଷݎ ܩݐ

ൌ
ܮܶ

ଵݎߨ2
ଷܩݐ

→ 	߮ଵ ൌ ߮ଶ	
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Example	 17:	 Equal	 torques	 are	
applied	to	thin‐walled	tubes	of	the	
same	 length	 L,	 same	 thickness	 t,	
and	same	radius	c.	One	of	the	tubes	
has	been	slit	 lengthwise	as	shown.	
Determine	(a)	the	ratio	τb/τa	of	the	
maximum	 shearing	 stresses	 in	 the	
tubes,	 (b)	 the	 ratio	 φb/φa	 of	 the	
angles	of	twist	of	the	tubes.	
	

߬ ൌ
ܶ

ݐܣ2̅
ൌ

ܶ
2ሺܿߨଶሻݐ

	

߬ ൌ
ܶ

ܿଵܾܽଶ
ൌ

ܶ
0.333ሺ2ܿߨሻݐଶ

	

߬
߬
ൌ

ܶ
0.333ሺ2ܿሻݐଶ

ൈ
2ሺܿߨଶሻݐ

ܶ
	

	

→
߬
߬
ൌ

ܿ
ݐ0.333

ൌ
3ܿ
ݐ
	

 

c

߮ ൌ
ܮܶ
ܩଶܣ4̅

ර
ݏ݀
ݐ
ൌ

ܮܶ
4ሺܿߨଶሻଶܩ

൬
ܿߨ2
ݐ
൰ ൌ

ܮܶ
ܩݐଷܿߨ2

 

߮ ൌ
ܮܶ

ܿଶܾܽଷܩ
ൌ

ܮܶ
0.333ሺ2ܿߨሻݐଷܩ

ൌ
ܮ3ܶ

ܩଷݐܿߨ2
→

߮
߮

ൌ
ܮ3ܶ

ܩଷݐܿߨ2
ൈ
ܩݐଷܿߨ2
ܮܶ

ൌ
3ܿଶ

ଶݐ
 

Example	 18:	 A	 circular	 tube	 (1)	 and	 a	 square	
tube	 (2)	 are	 constructed	 of	 the	 same	 material	
and	 subjected	 to	 the	 same	 torque.	 Both	 tubes	
have	 the	 same	 length,	 same	wall	 thickness,	 and	
same	cross‐sectional	area.	What	are	the	ratios	of	
their	shear	stresses	and	angles	of	twist?	
ݐݎߨ2 ൌ ݐ4ܾ → ݎߨ ൌ 2ܾ	

߬ଵ ൌ
ܶ
ݐܣ2̅

ൌ
ܶ

2ሺݎߨଶሻݐ
	

߬ଶ ൌ
ܶ
ݐܣ2̅

ൌ
ܶ

2ሺܾଶሻݐ
ൌ

ܶ
2ሺߨଶݎଶ/4ሻݐ

ൌ
2ܶ

ݐଶݎଶߨ
	

߬ଵ
߬ଶ
ൌ

ܶ
ݐଶݎߨ2

ൈ
ݐଶݎଶߨ
2ܶ

ൌ
ߨ
4
ൌ 0.79	

 

߮ଵ ൌ
ܮܶ

ܩଶܣ4̅
ර
ݏ݀
ݐ
ൌ

ܮܶ
4ሺݎߨଶሻଶܩ

൬
ݎߨ2
ݐ
൰ ൌ

ܮܶ
ܩݐଷݎߨ2

, ߮ଶ ൌ
ܮܶ

ܩଶܣ4̅
ර
ݏ݀
ݐ
ൌ

ܮܶ
4ሺܾଶሻଶܩ

൬
4ܾ
ݐ
൰ ൌ

ܮܶ
ܾଷܩݐ

ൌ
ܮ8ܶ

ܩݐଷݎଷߨ
 

߮ଵ
߮ଶ

ൌ
ܮܶ

ܩݐଷݎߨ2
ൈ
ܩݐଷݎଷߨ
ܮ8ܶ

ൌ
ଶߨ

16
ൌ 0.62	

These	results	show	that	the	circular	tube	not	only	has	a	21%	lower	shear	stress	than	does	the	square	
tube	but	also	a	greater	stiffness	against	rotation.	


