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CHAPTER 3: TORSION

Introduction: In this chapter structural members and
machine parts that are in torsion will be considered. More
specifically, you will analyze the stresses and strains in
members of circular cross section subjected to twisting
moments, or torques, T and T'. Members in torsion are
encountered in many engineering applications. The most
common application is provided by transmission shafts, which
are used to transmit power from one point to another. These
shafts can be solid or hollow.

Analysis of Stress and Strain

Now Consider a shaft AB subjected at A and B to equal and
opposite torques T and T', we pass a section perpendicular to
the axis of the shaft through some arbitrary point C as shown.
Based on the free-body diagram of the portion BC of the shaft
and equilibrium we have:

dT =r dF - T=frdF=J r1dA

A
Also note that shear cannot take place in one plane only.
Consider the very small element of shaft shown. We know that
the torque applied to the shaft produces shearing stresses t on
the faces perpendicular to the axis of the shaft. But the
conditions of equilibrium require the existence of equal
stresses on the faces formed by the two planes containing the
axis of the shaft. Such shearing stresses occur in torsion can be
demonstrated by considering a “shaft” made of separate slats
pinned at both ends to disks as shown below. If markings have
been painted on two adjoining slats, it is observed that the
slats slide with respect to each other when equal and opposite
torques are applied to the ends of the shaft. While sliding will
not actually take place in a shaft made
of a homogeneous
material, the tendency for sliding will
exist, showing that stresses occur on
longitudinal planes as well as on planes
perpendicular to the axis of the shaft.
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Now consider a circular shaft that is attached to a fixed support at
one end. If a torque T is applied to the other end, the shaft will
twist, with its free end rotating through an angle ¢ called the angle
of twist. When a circular shaft is subjected to torsion, every cross
section remains plane and undistorted. In other words, while the
various cross sections along the shaft rotate through different
amounts, each cross section rotates as a solid rigid slab (this is not
the case for a shaft with square cross section as shown).

We will now determine the distribution of shearing strains in a
circular shaft of length L and radius c that has been twisted
through an angle ¢. Detaching from the shaft a cylinder of radius r,
we consider the small square element formed by two adjacent
circles and two adjacent straight lines traced on the surface of the
cylinder before any load is applied. As the shaft is subjected to a
torsional load, the element deforms into a rhombus. Recall that
the shearing strain y in a given element is measured by the change
in the angles formed by the sides of that element. Since the circles
defining two of the sides of the element considered here remain
unchanged, the shearing strain y must be equal to the angle
between lines AB and A'B:

rQ cQ T
r(szy_)sz_)Vmaxz_

r
T=G0GY 2> T==Tpnax
c

r T
Tzf erAzf T —Tmayx AA = maxf r2dA
A a € A

c

Tmax Tc Tr

T = = — = —

c ] = Tmax ] =T ]
P T 4 T 4 4
for solid shaft: | = EC , for hollow shaft: | = 0 (cog —ci)
Tr Ly TL
-

How can we measure G by a
— torsion test?

Tmax




(50) ( )

Shaft with intermediate torque

TL TL
Pa = Pa/p T Pp/ctPc/p + Yp = ]_G)AB +]_G)BC +]_G)CD +0
n
T;L;
- =
¥a — JiG;i

Shaft with Continuously Varying Loads or Dimensions

Tdx T(x)dx
~JG f J(OG(x)

Normal Stress in Torsion

Up to this point, our analysis of stresses in a shaft has been
limited to shearing stresses. This is due to the fact that the
element we had selected was oriented in such a way that
its faces were either parallel or perpendicular to the axis of
the shaft. We know from earlier discussions that normal
stresses, shearing stresses, or a combination of both may
be found under the same loading condition, depending
upon the orientation of the element that has been chosen.
Consider the stresses and resulting forces on faces that are :
at 45° to the axis of the shaft (no shearing force acts along '
DC):

F = 2(Tjax Ag) COS45° = = TarAoV2
F Tmax 0\/_

= =T
A 0\/— max

Failure model in Ductile and Brittle Materials

Ductile materials generally fail in shear. Therefore, when "
subjected to torsion, a specimen made of a ductile material
breaks along a plane perpendicular to its longitudinal axis.
On the other hand, brittle materials are weaker in tension
than in shear. Thus, when subjected to torsion, a specimen
made of a brittle material tends to break along surfaces
that are perpendicular to the direction in which tension is
maximum, i.e., along surfaces forming a 45° angle with the
longitudinal axis of the specimen.

L<\() |

E-EA

(a) Ductile Failure (b) Brittle Failure
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Example 1: Knowing that a 10 mm diameter
hole is drilled through AD, determine (a) the
shaft in which the maximum shearing stress
occurs, (b) the magnitude of that stress.

Part AB: 90 Nm

+¢‘ZT=O—>TAB—90Nm=0—>

TAB =90 Nm
dap= 20 mm
_ TapTa)max A
Tmax)AB - T
B
_ (90000 Nmm)(10 mm)
= 61.1 MPa ‘
Part BC: (" 2

+“ZT=0—>TBC+270Nm—9ONm=O

_)
Tpe = —180 Nm 270 Nm Tgc
_ TgeTsc)max
Tmax)BC - T

_ (180 000 Nmm)(10 mm)
%(104 — 59 )mm*
= 122.2 MPa

Part CD:

+“ZT=0—>TCD—90Nm+27ONm
+110Nm =0 -

Tep = —290 Nm

_ TepTep)max
Tmax)CD - ]
cD

_ (290 000 Nmm)(10 mm)
%(104 — 59 )ymm* \
= 196.9 MPa — Ans A
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Example 2: The aluminium rod AB (G = 27
GPa) is bonded to the brass rod BD (G = 39
GPa). Knowing that portion CD of the brass
rod is hollow and has an inner diameter of
40 mm, determine the angle of twist at A.

60 mm

g

Statics:

+mZT=0—>TAB—800Nm=0—’ T, = 800N . m

250 mm
TAB = 800 Nm
375 mm
+”ZT=0—>TBC—800Nm—16OONm=O A e
= Tpe = 2400 Nm 400 mm

+“ZT=O—>TCD—800Nm—16OONm=0
- T,p = 2400 Nm

Tas
To,=800N.m (\
P4 = Pa/p t Pp/c + Pc/p + Pp ~
o
A
TL TL TL
Py = ]_G)AB +]_G)BC +]_G)CD +0 TBC
Ty = 1600 N - m

Pa
~ (800 000 Nmm)(400 mm) T, = 800N - m >

- Z(18* mm#)(27 000 MPa)
N (2400 000 Nmm) (375 mm)

7 (30*mm*)(39 000 MPa) A
, (2400000 Nmm) (250 mm) Tep
7 (30% = 20* mm*)(39 000 MPa)
= 0.0727%¢ 4 0.0187%¢ + 0.0157%¢ = 0.1057%¢ =
= 6.02° Tp =1600N - m \ ol
\\J,’
T, =800N .m Y



(53)

Example 3: The shaft (G = 80 GPa) has a
diameter of 14 mm, determine the angle of
twist at B.

+f~ZT=0—>TBC—150Nm=0

40 Nm 500 mm

- Tpe = 150 Nm B

300 mm
ZSOW
+mZT=0—>TCD—150Nm+280Nm=0 400 mm
- Tep = —130 Nm 150W

+QZT=0—>TDA—150Nm+280Nm
+40Nm =20

>Tp, = —170 Nm

@B = Pp/c T Pc/p T Ppjat Pa

TL TL TL
Yp = ]_G)Bc +]_G)CD +]_G)DA +0

(150 000 Nmm) (400 mm)
~ Z(74mm*)(80 000 MPa)
(=130 000 Nmm)(300 mm)
%(74mm4)(80 000 MPa)
(=170 000 Nmm) (500 mm)
%(74mm4)(80 000 MPa)

Pp

=0.2m%d _ (.1372d — 0.287ad = —_(,217ad
=—12.1°=12.1°~
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Example 4: For the given shaft and loading ‘ ¢ ‘ T
show that: ” 7

_2TL (1§ + 174 +17)
Pa= 3nG i

dx; EE———
X 3

4 Tdx LTdx T (Ldx

= e d = = — —_— :

PTG T T G TE ) T )
T Ty —
Je==rt n="Lx+r
T (L dx

2 Pa=7

o (e )

2TL (13 + 11y +14)
Pa =

3.3
3nG 1y

Example 5: For the shaft and loading
shown (G= 75 GPa, d = 80 mm, L = 800
mm) determine the angle of twist at B.

o = T,dx LT dx
4 JG J: , JG
1t 1 L
=— | Tedx =—7 f (5000 Nmm/mm X x) dx
JG J (7 404mm4) (75000 MPa) Jo

5000 Nmm/mm fL yd (5000 Nmm/mm) (800 mm)?/2
= x) dx =
(3 40*mm*) (75 000 MPa) Yo (3 40mm*) (75 000 MPa)

= 0.00537%¢ = 0.3°



Example 6: The design
of the gear-and-shaft )
system shown requires S %

that steel shafts of the ~_ . .
K '=1000 N - m

40 mm

same diameter be used
for both AB and CD. It is
further required that Tmax
< 60 MPa and that the
angle @p through which
end D of shaft CD rotates
not exceed 1.5°. Knowing
that ¢ = 77 GPa,
determine the required 600 mm

diameter of the shafts. \

ZTCZO_)TCD_rCFZO ZTB=O—)TAB—T3F=O

400 mm
\

g 100 mm

Tyg = —Tep = ———%x 1000 Nm = 2500 N
‘B Tc 0™ 40 mm m m
Shear stress remaining smaller than 60 MPa: Tco = 1000 Nm
Maximum shear stress occurs in shaft AB as Tas>Tcp ' \"""‘::.j;D
Typr
Tmax = —2— < 60 MPa —
JaB

(2500 000 Nmm) r

i

4
5T
2

<60MPa->r=2982mm —»d=>=>59.64mm

Angle of twist at D remaining smaller than 1.5°:

TaAB
n 157T TCDLCD n
Yp =@ Pc2>Tan=—"7 ~ 19
D D/C C 180 ]CD GCD (o GQ‘ . ‘ 1 )2
- = "'--.,,_7_7},1: "4
1.5 Teplep N 1.5m (1000 000 Nmm) (600 mm) N 1F “zg /,/<j
-— = @ b = 0] > [ 5
180 JopGep ¢ 180 274 X 77 000 MPa ¢ S\ B
4961 o
0.02618 = - + @c (two unkonws:r and @)
Tp TapLag
Te@c = TgPp = Pc = —@p and also gg = Pp/at P4 =
Tc JapGap
(2500 000 Nmm) (400 mm) 8268 100 mm N 8268 20670
- = = = = =
Ve 274X 77 000 MPa PR A T T a0mm T r
4961 4961 20670
0.02618 = ——+ ¢ —» 0.02618 = —; +— 2> r=31L45mm —>d = 629 mm (Ans)
T T T
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Example 7: Two solid steel shafts (G = 77.2 GPa) are
connected to a coupling disk B and to fixed supports at A /
and C. For the loading shown, determine (a) the reaction at 250 mm

each support, (b) the maximum shearing stress in shaft AB,
(c) the maximum shearing stress in shaft BC. |/

P

200 mm

ZT=O—>TA+TC=1.4kNm s

The system is statically indeterminate.

Compatibility equation: A
.
Yc=0->¢c/p+@patPa=0 \\l
LT 50 mm
BC~BC AB™AB
+ +0=0 |
]BCG ]ABG

ZTZO_)TBC:TC
ZT=O_)TAB=TC_14kNm

Te X 250 mm N (Tc — 1400 000 Nmm) x 200 mm 0

.94 TToey
219 225

- Te = 294938 Nmm = 295 Nm

- T, = 1400 Nm — 295 Nm = 1105 Nm

—)TBCZTC =295 Nm TC
- TAB = TC — 1.4 kNm = 295 Nm — 1400 Nm TBC / C
= —1105Nm /
T, 1105000 N 25
tag. . = anTaz _ mm)(25 M) _ 45 ppa
max Jap %254mm4
T 295000 N 19
= Tactse _ mm) A9 M) _ 27 4 Mpa

TBCmax = 3
JBc > 19*mm*
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Example 8: A torque of
magnitude T = 4 kNm is applied
at end A of the composite shaft
shown. Knowing that the
modulus of rigidity is 77 GPa for
the steel and 27 GPa for the
aluminum, determine (a) the

: : . 72 mm
maximum shearing stress in the
steel core, (b) the maximum
shearing stress in the aluminum
jacket, (c) the angle of twist at A. 54 mm -— )
-

A( |

Steel core — <

<

Aluminum jacket /

Equilibrium: T =Ty + T =4 kNm (1) - statically indeterminate

Compatibility equation:

Tpl _ Tsl T,

Ts

Py = Ps —

(Dand (2)
—> Ty, =172kNm and Ts=2.27kNm

Maximum shear stress in the steel core:

Ter 2.27 X 10 Nmm)(27 mm
TS)max = Smex ( )( ) = 73.42 MPa

Is %(274) mm*

Maximum shear stress in the Aluminium jacket:

Ty, 1.72 x 106 Nmm) (36 mm
= Amax _ ( X )~ 343 MPa

Ja %(364 — 27%) mm*

The angle of twist at A:

Tyl (1.72 % 10° Nmm)(25 00 mm)
47 JaGa 7 (36* — 27%) mm* x 27 000 MPa

JaGa  JsGs 7 (36% — 27%) mm* x 27 000 MPa

%(274) mm# x 77 000 MPa

73.4
MPa

-

34.3
MPa

= 0.0887%4 = 5,05°
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TBR 1: shafts are made of A-36 steel (G
=75 GPa). Each has a diameter of 25 mm
and they are connected using the gears
fixed to their ends. Their other ends are
attached to fixed supports at A and B.
They are also supported by journal
bearings at C and D, which allow free
rotation of the shafts along their axes. If
a torque of 500 Nm is applied to the gear
at E as shown, determine the reactions
at A and B as well as the angle of twist at
E (1390).

Answer: Tg = 222.22 Nm, Ta=55.6 Nm,
@r=1.66°

From Statics (equilibrium) of torques:

AE:ZT=0—>—TA+500—rEF=0 (1)

We have two equations three unknowns (Ta, Ts, and F), so we need
a compatibility equation:

15Qp = 1pPr 2 T5(Qg/a + ©a) = 177 ((Pr/p + @) =

re (TEALEA n O)= e (TFBLFB n 0)

JEAGEA JFBGFB

T4X1500 mm
JG

S F
100 mm —/‘%
-Tg=4T, (3) . JSOO N-m

(1,(2), and (3)
_—

(TB><750 mm) N

- 100 mm ( )=50mm

&5

T, = 55.6 Nm, Ty = 222.22 Nm

TEALEA _ TALEA

= + @, = = - b

PE = PE/a T Pa = PE/a JeaGea  JEaGEga

(55600 Nmm) (1500 mm)
7 (125 mmm)*(75 000 MPa)

= 1.66°

= 0.029 rad




TBR 2: shafts (1) and (2) have a
diameter of 20 mm and shaft (3)
has a diameter of 25 mm. The [y
supports allow free rotation of
the shafts along their axes.
Determine the maximal shear
stress in shaft (1). Also, find
rotation of gears C and E.
Assume that G = 80 GPaand L =
400 mm (1391).

Tc=140 Nm

iT =0.

Y 7 @
46 - 2+@Tﬁ :S) g\

NE - i

éof~ — Tf)@:a(?’) (’

: g3
Two e/z/a 7[/ WS Three Unkpowns

i
14 % = 6 245,

7

e . — e =
e = CT’E/ b }L(/Z 7>/0 JED Gp Jep Cep

T~ Tt - Toy - TR Tairs 3

i

(0"“"'(’(’& *Lk' ‘/Ja'(\’.\L

TE/)LED 7—0 L—Ep @

>

Telps ,
Loa o Bl 4T 6o
JpB, logph A /, A e
AB Cpry = p CEp /02(%2) /1/2()/;_)4 e
—s Tp=09F6 TAD (L), (3)—> Ta=l0& @
. Tp = 9827 K"
o TH , N 20ww
L'—/ 7 k3 ___('00(7)('0 kwm)(" é} _ é4_. MPI\@
ab r//L(Z;;w)Lv
70 ToLae  Talps
e B oy = e 2P

)26 (’:/3( )ﬁ/}('ﬂﬂ
(ovmmlte) | (upirdimioccter)_ (5]

¢
¥ 4 4 540
o s * (sett) T, (o) (BeotP) _ 4 g0
. o m 3 . .

TEbGEp o (éz)szﬁx EOXIO%NFII
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TBR 3: Find the maximal y| G1=G2=G3=28GPa

shear stress in shafts (1) and ‘ 400 mm , 200 mm |

(3) as well as rotation of gears ’

Cand E (1392). Sd-teeth T¢ =460 Nm

Ta T¢ =460 Nm

42 teeth

Tc —F X1g — T4 =0 (Equilibrium of shaft ABC), T, — F X gz = 0 (Equilibrium of shaft DE)

T,—T, 713 54 460 — T,
=2 -""-1286> —2=1286-1.286T, + T, = 460 Nm (1)
T, 1y 42 )

e d

— Statically indeterminate: 2 unknowns (T, and Tp): Compatibility Equations:

Pa=¢p=0
T@Pp = 1TgPg = T5(Ppja + ©a) = Te(Pg/p + 9p) — > 15(¥p/a) = Te(VE/D)
TABLAB TDELDE TALAB TDLDE Laop=LpE and Gap=GpE TA TD
T =7 = Ip(—) =71, >Tp(—) = Te(—
5 0Gas)  EneGoe’ P asGar  EnsGos 5 =G
TA TD (1)and (2)
54| —— | =42| ——— |2 T, =2988Tp (2) — Tp =107.6 Nm, T, = 321.6 Nm
35\* 25\*
7 () ™ (%)
3 35 3 25
321.6 X 10°Nmm X - mm 107.6 X 10°Nmm X - mm
Ty = 7 = 38.2 MPa,t, = 7y = 35.1 MPa
E(E ) E(E )
>\ mm >\ mm
Tpglpr  TpLpg  (107.6 X 103 Nmm) (400 mm) .
(pE:(pE/D+(pD:(pE/D:] G :] G = = /28 2 = 0.04rad = 2.3
DETDE  JDEUDE u (7) x 28000 MPa

TpcLpc | TapLlap
JecGpe  JapGas
_ (460 000 Nmm) (200 mm) N (321.6 X 103 Nmm) (400 mm)
I E
2\2

Qc=Pc/pt Ppjat Pa=Pc/p+ Ppa=

= 0.0535 rad = 3.06°

4
) x 28000 MPa

)4 x 28000 MPa T (35

2\2
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TBR 4: For the gear system shown find maximal To so that maximal shear stress in the thin-
walled shaft AB remains smaller than 40 MPa. Based on the calculated To determine rotations of
N and M as well as maximal stress in shoft CD (G= 60 GPa) (1393).

f=5mm
1.2 m
; f”’:: - > M (ryr =400 mm)
/ 4 | 60 mm /
; r‘ Hollow Shaft =
PEFFFN T A\ =
N g -»X =
60 mm J : =
N\ - - : - - E | — X
. N ' =
(®) view X-X y4 L.x BE
N = T,
Q »Y ;
yC o DE
90 mm \ - — — - E
(@) N =
Q LY j =
J . N
) Solid Shaft N (ry=200 mm)
(©) view V-¥ 1.0m

Ty —400F — T, =0 (2)
200F —-T, =0 (2

- 2T+ T, =T, (1) Statically Indeterminate (1)

- TL TL [ds
Compatibility: 400 X @y = 200 X @y = @y = 200y (2) _)]_G)CD =2X me)AB
Tc(1000 mm T,(1200 mm 4 x 60 mm
G el ) =2x ;( 2 ) ( )

7(45 mm)* x 60 000 MPa 4 x 3600%mm? x 60 000 MPa 5mm

0.000155 T, = 0.002222 T, - T, = 1431T, (2) (1
(Dand (2) > T, =003375T, T,=0483T, (2

0.03375T,

T, = 42 663 978 Nmm = 42.6 kN
2 (3600 mm2)(5 mm) " ° mm m @

T
TAB=2—Ait—>40MPa=

Tc (1000 mm)

Terep  0.483 X 42 663 978 Nmm X 45 mm
%(45 mm)* x 60 000 MPa

=144 MPa (2) @y =
Jep %(45 mm)* N

Tcp =

= 0.0533 rad = 3.05°, @y = ‘%’V =152 (D
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Design of Transmission Shafts

The principal specifications to be met in
the design of a transmission shaft are the
power to be transmitted and the speed of
rotation of the shaft. The role of the
designer is to select the material and the
dimensions of the cross section of the
shaft, so that the maximum shearing
stress allowable in the material will not be
exceeded when the shaft is transmitting
the required power at the specified speed.

To determine the torque exerted on the shaft, we recall from elementary dynamics that the power P
associated with the rotation of a rigid body subjected to a torque T is:

P=Tw
(Watt) = (N.m)(rad/sec)
w = 2nf
where fis frequency of rotation and its unit is 1/sec or Hz
>P=2nfT>T=-— =1 =E—>T=]Tﬂ
2nf mex- g c

Stress Concentration in Circular Shaft

\
1.8 \ d D/ A
rd
1.7 \ > | , ‘ ~
\(\/-g= 1111 | 9 - / :
1.6 | f ~L°
\\ ’//g = 1.25 D Shaft with change in diameter.
15 \K -
\\\ D~ 1.666
K 1+
\ D_» _ Tmax
1.3 \\< I D_o5 e %
: NN 47
1.2 \\\ﬁx
. s
1.0

0 005 0.10 0.15 020 0.25 0.30

r/d
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Fillet (R = radius)
A /
' B
T
PO, e

(@)

] T Tmax T Tl
D, D, ( D,
Section A-A Section B-B Section C-C

Example 9: The stepped shaft shown must
transmit 40 kKW at a speed of 720 rpm.
Determine the minimum radius r of the fillet
if an allowable stress of 36 MPa is not to be
exceeded. 45 mm

P=40kW,w =720 rpm

P 40000 Watt

ST =—= = 530.52 Nm
© 730 x 2Erad
60 sec
36 MPa D
K:T;i‘;x: e = 121~ K =121 and —=2
it 3
% (530.52 x 10 Nmm)( 2 )
T (45 mm\*
7(=77)

r
— from the graph — ] = 0.25->r=0.25d = 0.25 (45mm) = 10.8 mm
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Torsion of Noncircular Members

An important feature of the torsional
deformation of noncircular prismatic bars is

the wraping of the cross sections. The theory T
of elasticity may be used to relate the torque
applied to such noncircular prismatic
members to the resulting stress distribution
and angle of twist.
by
d) I S
== b =1
=== e N
ey < s /=0 1,70
‘\:q\“-——///, A —— // XZ
@ T =0
L Tmax zX
T]‘ :\()/
JX
v M \/ X
Z\\/},
-
T TL —— T max "
Tmax a Y= T
b? c,ab3G V\l 5
I B | }\ [ _/4 _____ _‘i) T T
1 a B 2
Cl—C2—§(1—063—> fOT'EZS Tmax ~— T =t =r5=1

Coefficients for Rectangular Bars in Torsion

| | /l a/b q Cy
a” b ! a; | : 0.208 0.1406
b b
k 0.219 0.1661

1.0
i 1.2
l 1.5 0.231 0.1958
1 2.0 0.246 0.229
2.5 0.258 0.249
‘ 3.0 0.267 0.263
X%‘( 4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.312 0.312
% 0.333 0.333

For thin-walled open-section members of uniform thickness (as those shown above) the same
formulation can be used to determine maximal stress and angle of twist. Maximal stress is
approximately the same over the long side surfaces except in the vicinity of the short sides.



Example 10: Segments AB and BC of
the shaft have circular and square
cross sections, respectively. The shaft is
made from A-36 steel (G = 75 GPa)
with an allowable shear stress of 7,; =
75 MPa and an angle of twist at end A
which is not allowed to exceed 0.02
rad. Determine the maximum allowable
torque T that can be applied at end A.
The shaft is fixed at C.

Maximum shear stress in shaft AB:

TanT, T (30 mm
T = ABAB—>75MPa=¥—>T=3180860Nmm
maxas JaB 2304 mm?
2

- T =3.18kNm

Maximum shear stress in shaft BC:

T
_ _BC a=b=90mm—>%=1—>c1=0.208 and ¢, = 0.1406

Tmaxpc = 2’

1ab
Tse T
-7 =—>-=—>75MPa=
TBC ¢ ab® 0.208 X 90 mm x 90% mm2

- T =11372400 Nmm = 11.37 kNm

Maximum angle of twist at A:

TapLag  Trclpc

+0
JaG CzabgG

®a = Pasp + Ppjc +9c — 0.02 =

T (600 mm) N T (600 mm)
%304 mm?* x 75 000 MPq 0.1406 X 90 mm x 903mm3 x 75 000 MPa

- 0.02 =

-»T=2795311 Nmm —-> T = 2.79 kNm (controls)
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Example 11: A 3-m-long steel angle has an L203 3m

x 152 x 12.7 cross section. From Table below we N \
find that the thickness of the section is 12.7 mm )

and that its area is 4350 mm?2. Knowing that tai = 4

50 MPa and that G = 77.2 GPa, and ignoring the

effect of stress concentrations, determine (a) the
largest torque T that can be applied, (b) the \

corresponding angle of twist. ~ g
P gang L203x152x12.7 \>< T
~

Y

|z [~
APPENDIX C Properties of Rolled-Steel Shapes g
(SI Units)
Angles X | X
Unequal Legs Ligi”
<,
)
Axis X-X Axis Y-Y Axis Z-Z
Size and Mass per
Thickness, Meter Area | I, St - y I y e X -
mm kg/m mm? | 10° mm?* 10° mm®* mm  mm | 10° mm?* 10° mm® mm mm mm fan «
[.203 X 152 X 254 65.5 8390 33.7 247 63.2 67.3 | 16.1 146 437 41.9 32.5 0542
19 50.1 6410 26.4 192 640 648 | 128 113 445 39.6 | 32.8 0.550
12.7 34.1 4350 18.5 131 64.8 62.5 9.03 78.5 455 37.1 33.0 0.557
r 50 MP
= —_— =
Pmax c,ab? @ c,ab?
b=127mm and A= ab - 4350 mm? = a (12.7 mm) —» a = 342.52 mm
a_ 34252 26.97 > 5 1(1 0.63 b) 1(1 0.63 12.7 mm ) 0.325
b 127 “a=0=3 a) "3 342.52 mm
50 MP 50 MP T T =899 242 N
= = - = - =
4= Cab? @ = 0.325 x 342.52 mm x 12.72 mm? mm
TL 899242 Nmm X 3000 mm d
7 = (0.1532"4¢ = 8.78°

T ,ab3G  0.325 X 342.52 mm X 12.73 mm3 x 77 200 MPa
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Example 12: A 2.4-m-long steel member (G = 77 GPa) has a
W200x46.1 cross section. Knowing that T = 560 Nm determine (a)
maximum shearing stress along lines a-a and b-b as well as the
angle of twist.

I S
=y \/ \\
APPENDIX C Properties of Rolled-Steel Shapes ﬁ |-
(SI Units) T
Continued from page Al8 J_[— —"
W Shapes Y W 200 x46.1
(Wide-Flange Shapes) iy
Flange
Web Axis X-X Axis Y-Y
Thick- | Thick-
Area Depth | Width  ness ness I St I s S, %,
Designationt A, mm? d, mm | b, mm t mm | t, mm | 10° mm* 10° mm® mm |10° mm* 10° mm’ mm
W200 % 86 11000 2292 209 20.6 13.0 94.9 852 92.7 | 313 300 53.3
71 9100 216 206 17.4 10.2 76.6 708 91.7| 253 246 52.8
59 7550 210 205 14.2 9.14 60.8 582 89.7 | 204 200 51.8
52 6650 206 204 12.6 7.87 52.9 511 89.2 | 17.7 174 51.6
46.1 5880 203 203 11.0 7.24 45.8 451 88.1 | 154 152 51.3
41.7 3320 205 166 11.8 7.24 40.8 398 87.6 9.03 109 41.1
359 4570 201 165 10.2 6.22 344 342 86.9 7.62 92.3 40.9

From Appendix C for the flanges: b = 11 mm and a = 203 mm so we have a/b = 18.45 > 5

11mm

= —1(1 063b>—1(1 0.63
A== al 7203 mm

= 0.322
; ; )

T, + 2T; = 560 Nm

From Appendix C for the web: b =7.2 mm and a = d-2 tr=203-2(11) = 181 mm, a/b = 25.14 > 5

7.2 mm

= —1(1 063b)—1(1 0.63
A== al 181 mm

= 0.325
; )
The system is statically indeterminate so we need a compatibility equation: ¢f = ¢,, -

Trly  _ _ Twlw
(c2ab3G)s  (cab3G),,

- Tr = 3.96T,, > Tf = 248.61 Nmand T,, = 62.78 Nm

T, 24861 x10° Nmm
= (ciab?); ~ 0322 x 203 mm x 112 mm

> =31.43 MPa

T, 62.78 x 10° Nmm
" (¢yab?),, 0.325x 181 mm x 7.22 mm?

Tw = 20.58 MPa

©f = @, = 0.0897%¢ = 5.1°



Example 13: A hollow tube with radial fins
is subjected to a torque T = 2 kKNm. Find the
torque transmitted to the fins and the
maximum shear stress.

— statically indeterminate

Compatibility equation:

Ptube = Prins
nL_ TL o4 38
1.6 cab’c Vb 6

1
Cl—C2:§(1_063_>
_1<1 0.63 6mm)
3 7 38mm
= 0.300
T,L T,L T;
.G 36 T 414 4
J1G cpab 5 (41* —35%)
T,
= —
0.3 x38x63

Tl - 84‘5.3 TZ (2)
T, = 2.34 Nm, T, = 1981.25 Nm

The fins carry less than 1% of the torque.
Tir

Ttube = T

_ (1981.25 x 10° Nmm) (41 mum)

- 7 (414 - 35%)

=39 MPa

T, 2.34 x 103Nmm

ciab? 0.3 X 38 x 62
=5.71 MPa

Trin =

= Tiax = 39 MPa
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Ax
Thin-walled Hollow Shafts (noncircular closed section) | ‘| J“ -
As indicated the determination of stresses in noncircular ey G
members generally requires the use of advanced mathematical B,‘L-—gﬁ / /\/
methods. In the case of thin-walled hollow noncircular shafts A / y |
(such as light-weighted frameworks in aircrafts and \\f / / \
spacecraft), however, a good approximation of the distribution ,\\\ \\ " /’/ )
of stresses in the shaft can be obtained by a simple \\\\*\\1\\\7 /,//
computation. Consider a hollow prismatic! cylindrical (cross F
section does not vary along the length of the member) B
member of noncircular closed? section subjected to a torsional B \
loading. While the thickness ¢t of the wall may vary within a \tB
transverse section?, it will be assumed that it remains small A A\ \
compared to the other dimensions* of the member. As t is I & \/\Z‘A\ .

through wall thickness>. We now detach from the member
the portion of wall AB bounded by two transverse planes at a
distance Ax from each other, and by two longitudinal planes

small we can assume that shear stress remains constant - L\

perpendicular to the wall. Considering equilibrium: / f
Fy = Fg = 14(tyAx) = 15(tgAx) — T4ty = Tty = Tt = constant /N ﬁ ~
=q ~

q is called shear flow.

We now detach a small element from the wall portion AB.
Since the upper and lower faces of this element are part of the Small element from segment
free surface of the hollow member, the stresses on these faces
are equal to zero. It follows that the stress components

indicated on the other faces by dashed arrows are also zero, / “\
while those represented by solid arrows are equal. Thus, the . [ \
shearing stress at any point of a transverse section of the - //
hollow member is parallel to the wall surfaces. /\
We will now derive a relation between the torque T applied to . ‘—‘\\ / /

a hollow member and the shear flow g in its wall: I
dF = tdA =1(t Xds) = (tt)ds = q ds
dT = pdF =p (q ds) = q(p ds) = q(2d4)

Oisan

A arbitrary
& point

=

- _ T

T=¢dT = 2dA) = 2gA =—
ff qu( )=2qA->q Y
q

T
= - = -
T=1 7 e T o7

This is average shear stress as it is based on assumption that dF
shear stress does not vary across wall thickness. Maximal
shear stress occurs where t is minimal.
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Tavg = the average shear stress acting over a particular thickness of the tube. We call it average
stress as we assumed that shear stress remains constant through wall thickness.

T = the resultant internal torque at the cross section

t = the thickness of the tube where 74,4 is to be determined

A = the mean area enclosed within the boundary of the centerline of the tube’s thickness.

Angle of Twist

The angle of twist of a thin-walled tube of length L can be determined using energy methods (we
will see it in Strength of Materials II). If the material behaves in a linear elastic manner and G is
the shear modulus, then this angle (¢), given in radians, can be expressed as:

TL ds

4A%G) t

(p:

Here the integration must be performed around the entire boundary of the tube’s cross-sectional

area (see the example below). If t remains constant through the section then we can write:
TL jg ds TL jg‘ TLS

= - _— = —— S = ——
?=am26¢) T T aAzet 442Gt

where S is the length of the centerline.

10 mm 10 mm

Example 14: A torque T = 5 | |
kNm is applied to a hollow f———===-

shaft having the cross section 1 b

shown. Determine the shearing —l—6mm da — =~ 6 mm o

1 \
stress at points a and b. Find '

angle of twistif L=2mand G =
77 GPa. 1

1o
Jt

mm 1 125 mm

—l<—6mm — = (G mm

A= (125-2x5) -
X (75 -2 % 3) l““" 1 1()£mn

= 7935 mm? el

| —
T, = L t b b
2At, ~—75 mm“ <75 mm‘I

5000000 Nmm

- 2 X 7935 mm?2 x 6 mm
= 52.5 MPa
_ T
24t
5000000 Nmm

- 2 X 7935 mm? x 10 mm

Tp

= 31.5 MPa
_TL [ds (5% 10° Nmm)(2000 mm) ( 125 -10 +2x 75 — 6) — 0.0269 rad — 1.5°
Y =426 ] T T 4(7935 mm?)2(77000 MPa) 6 o) = 00269 rad = 1.
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Example 15: A 90-Nm torque is applied to a
hollow shaft having the cross section shown.
Determine the shearing stress at points a and b.

_ T
A=2><39><13+13><13+Z392 = 2377.6 mm?

T 90 000 Nmm 473 MP
ta = odt,  2x2377.6mmEx4amm ¢
T 90 000 Nmm
= 9.46 MPa

T = o dt, 2% 2377.6 mm? X 2 mm
_TL [ds_ TL (52) \s (13) | 2m(39)/4
=aa2c Y T "z 2 \% 2 7

@

39 mm 39 mm

V13 mm

Center line

TBR 5 (1390): A shaft has the cross section
shown and is made of 2014-T6 aluminium
alloy (G = 27 GPa) having an allowable shear
stress of tani=125 MPa. If the angle of twist
per meter length is not allowed to exceed
0.03 rad, determine the required minimum
wall thickness t when the shaft is subjected
to atorque of T = 15 kNm.

75 150 =
X — + =752 = 18578.51 mm?

tan 30° 2 2
T e 15 000 000 Nmm
= — - =
iy ¢ = 2x1857851mm2 x t

—-t=322mm

A=

2 mm

b

4 mm —

t——
40 mm\ 55 mm
4 mm
°
| )
~—— 55 Mmin——
2 mm
===
|
|
|
1l — N
|
|
|
| 55 mm
|
1
b o
)
—

55 min——

_TL ds
VYIS O
2X75mm
o T jé ds 003 15 000 000 Nmm “Sm3p0° T TEX75mm
- — = ——— —_— > =
L 44*GJ t 1000mm  4(18578.51 mm?2)*(27 000 MPa) t

-t = 7.18 mm (controls)
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Example 16: Calculate
shear stress at mid-
thickness and the angle of
twist from elastic torsion T'
formula and once from
thin-walled theory.

Elastic torsion formula (stress):

r+r :
o T (%) _ T(ry + 1) \ Cm
' %(rz“ —rhy w07 ) )+ 1) ri
2
7 i
- 7, = —5——— (exact solution) A\
n(ry + 1)t | [
Thin-walled formula (stress): T

T T 2T

T, = — = =
27 24t o (r1 -; rz)z . m(ry + 1,)3t

(not the exact solution)

If the shaft is thin-walled we have: r; = r,:

T T p 2T 2T T
= = = = = e d
n(rf +r2)t  2mrft anetz n(ry + 1%t mw(4rP)t  2mrft

T 71 =13

For very thin-walled shafts the thin-walled formula gives the exact solution and becomes
equal to the elastic formula

Elastic torsion formula (angle of twist):

TL TL 2TL 2TL
P1=——== = =
Y6 %(rf —rHe T+ — ) )G n(F ) + )G
rn+T
TL [ds TL 2n(5-2) ATL
@y = —_2 —_—= ” = 3
4A%G ) t Ar2 (rl -;rz) G t n(r +1,)3tG

If the shaft is thin-walled we have: r; = r,:

2TL TL 4 4TL TL
n(rf + 12 (ry + r)tG  2mrdtG 2 n(ry +1r)3t6  2nritG

1 - Q1= @,
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Example 17: Equal torques are
applied to thin-walled tubes of the
same length L, same thickness ¢,
and same radius c. One of the tubes
has been slit lengthwise as shown.
Determine (a) the ratio ts/tq of the
maximum shearing stresses in the
tubes, (b) the ratio @»/@a of the
angles of twist of the tubes.

T T
ta = oAt 2(mc?)t

T T
T = ab? T 0.333(2mo)t?
T T 2(mc?)t

— = X
T, 0.333(20)t2 T

Tp c 3c

e frd =
7, 0333t t

TL [ds TL  [2mc TL
=379 (%)

“aA6) t 4(mc?)2G\ t = 21c3tG
TL TL 3TL_ | ¢ _ _3TL 216 _ 3¢
= = = - — = =
Y8 = ,ab3G ~ 0.333(2m0)t3G  2mct’G | @,  2mct3G . TL t2

Example 18: A circular tube (1) and a square

tube (2) are constructed of the same material (rrr===========x N
and subjected to the same torque. Both tubes : i ;
have the same length, same wall thickness, and i T
same cross-sectional area. What are the ratios of i i
their shear stresses and angles of twist? : E
2nrt = 4bt - nwr = 2b 1 |
T T : NEEEEEEEEE e e 4
LW =57~ 2 o !‘ b .
24t 2(mr?)t

Y T 2T
2750 2(b2)t  2(m2r2/4)t m2rit
T anrzt_n_079
T, 2mr?t’ 2T 4

_TL jgds B TL (2nr> _TL _TL fds _TL (4b> _TL  8TL
P26 Tt T a6\t ) T 2t P2 T 4a26 ) Tt T 20926\t ) T b3tG | miratG

¢4 TL m3r3tG  m?
— = X =—=0.62
@, 2nr3tG 8TL 16

These results show that the circular tube not only has a 21% lower shear stress than does the square
tube but also a greater stiffness against rotation.



