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CHAPTER 4: BENDING OF BEAMS

This chapter will be devoted to the analysis of prismatic members
subjected to equal and opposite couples M and M' acting in the same
longitudinal plane. Such members are said to be in pure bending. An
example of pure bending is provided by the bar of a typical barbell as
it is held overhead by a weight lifter as shown. The results obtained
for pure bending will be used in the analysis of other types of
loadings as well, such as eccentric axial loadings and transverse
loadings (see examples below).

800 N
800N |«0.1 m-— ‘«0.1 m-—-| P
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Symmetric Prismatic Member in Pure Bending (Equilibrium)

Assumptions: (1) Section has at least one plane of symmetry, (2) The bending moment is applied
in plane of symmetry and (3) the beam is prismatic

Conclusions: (1) Only normal stress (uniaxial stress) exists in bending (from theory and
experiment), (2) There exists a neutral axis, and (3) The deflection curve of the bent beam forms a
circular arc (from theory and experiment), see below for details.

Considering equilibrium: We have total of 3 equilibrium equations as follows:

Y Y

4 4 M

ZFx=0—>fadi=0 (1), ZMy=0—>fzadi=o (2),ZMZ=0—>f(yadi)+M=O 3)

As the variation of o, on the section (4) is unknown these equilibrium equations cannot be resolved
and therefore the system is statistically indeterminate and we need compatibility.
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Deformation of Symmetric Member in Pure Bending

Since all the faces represented in the two projections are at
90° to each other, we conclude that yx = yzx = 0 and, thus, that
Ty = Txz = 0. Also, oy, 0z and 1y, we note that they must be
zero on the surface of the member. Thus, at any point of a
slender member in pure bending, we have a state of uniaxial
stress. Recalling that, for M > 0, lines AB and A'B' are
observed, respectively, to decrease and increase in length, we
note that the strain exand the stress ox are negative in the
upper portion of the member (compression) and positive in
the lower portion (tension). Therefore there must exist a
surface parallel to the upper and lower faces of the member,
where &x and ox are zero. This surface is called the neutral M
surface. For two reasons it is important to determine
position of the neutral axis: 1) to compute maximal
stress and 2) to make holds (if needed during design)

along the neutral axis (to avoid stress concentration).

Lpp=L=p8, Lix=L = (p—y)0 M
, —yb y c
Lo 5:L_L:_yeﬁgxzzzp_g:__ﬁlsmaxl:;_)Sx:_zgmax
y y
oy = Eexy = == (Eepax) = 0x = == Opmax
p p—y ¢ ¢ Y
y O max

Neutral surface

Longitudinal vertical section Transverse section Bending stresses

fo,dA=0- [— O'max dA =0 - [ydA =0 - Neutral axis passes through the centroid of the section

2 Omax Mc My
(=yo,dA) =M - O'madi = M — Tmax p y*dA=M->—— p I—M—>amax=T—>ax=—T
M M A=24 il\]
Omax =T =5 (S: the elastic section modulus) / \\ — |_
E ]— / ' c
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POINT 1: Since in pure-bending M is constant along the entire length of the beam, deformation
of a beam is uniform along the length of the segment undergoing pure bending; so whatever
happens at a typical cross-section also happens at any other section. For example, the curvature
of the deflection curve at any section is the same as the curvature at any other section. Therefore,
the deflection curve forms a circular arc, with center of curvature at C.

POINT 2: [ 20, dA=0— [ —22 0y dA=0— [2ydA =01, =0 -
y and z are proncipal axes of the cross section — we already know it from symmetry

Deformations in a Transverse Cross Section
As mentioned the transverse cross section of a member in
pure bending remains plane but we will have some
deformations within the plane of the section.

vy

p

E =

y = —VEy,

£, =~V D E, =&
The relations we have obtained show that the elements
located above the neutral surface (y>0) will expand in both
the y and z directions, while the elements located below the
neutral surface (y<0) will contract. In the case of a member
of rectangular cross section, the expansion and contraction
of the various elements in the vertical direction will
compensate, and no change in the vertical dimension of the
cross section will be observed. As far as the deformations in
the horizontal transverse z direction are concerned,
however, the expansion of the elements located above the
neutral surface and the corresponding contraction of the
elements located below that surface will result in the various

horizontal lines in the section being bent into arcs of circle.

1
P —)—,:
P

v
; (Anticlastic curvature)

Example 1: A nylon spacing bar has the cross
section shown. Knowing that the allowable
stress for the grade of nylon used is 24 MPa,
determine the largest couple M. that can be =

applied to the bar. M.
M,c M, (40 mm
Omax = —— = 24MPa=¥
Z Z

1 T
I, = B (100 mm) (80 mm)3 — " (25 mm)* = 3959 871 mm*

M, (40 mm)
ﬁ
3959871 mm*

— 24 MPa

M, = 2375922 Nmm

- M, = 2.38 kNm

Neutral
surfacle

Neutral axis of /
transverse section

p=piv]|

i‘

'h C'

/ 80 mm

- r= 25 mm 1

l<— 100 mm —>|
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Example 2: Two vertical forces are applied to a beam of the
cross section shown. Determine the maximum tensile and

compressive stresses in portion BC.

Position of neutral axis (considering origin of the

coordinate system at the base):

__XyA

_ 12,5 x (100 X 25) + 100 x (150 x 25) + 187.5 X (200 X 25)
Bl 100 X 25 + 150 X 25 + 200 X 25

-y =119.44mm

A

|-200 mm,| |
L TN - :T 25 mm
25mm— -~ 150 mm
25 mm
i
111 kN
' B yC

|4—1500 mm-——-

111 kN

’«200 mm»‘ ‘ -
R 500 mm 500 mm
— 25 mm
N.A. }
y=119.44mm | — = 150 mm
25 mm ‘
—’ — 25 mm 111 kN 111 kN
100 mm A /B yC D
Moment of inertia with respect to the neutral axis: i E
IN.A.=ZT+Ad2 111 kN | i 111 kN
1 | ! ' i
= = (100)(25%) L o
+ (100 x 25)(119.44 — 12.5)? ! | ! |
FI T omep o
+ E(ZS)(1503) : i !
25 % 150)(119.44 — 100)? | i |
* (1 X ) i 55.5kNm . !
+ 15 (200)(25%) ! ! |
+ (200 x 25)(200 — 119.44 — 12.5)2 E i E
= 60.6 X 106 mm* ! : Lox
Maximum tensile stress at the lowermost corner: i
_ Mc 555X 10°Nmm X 119.44 mm 1094 MP 111 kN
Omax = 7~ = 60.6 X 106 mm* - rA A .
Maximum compressive stress at the uppermost corner: B ¢
_ Mc 555 % 10°Nmm x (200 — 119.44) mm |
Omax =~ = 60.6 x 106 mm* Y
1 M 1 55500 000 Nmm M = 55.5 kNm
—_=— D — =
pEI p (200000 MPa) (60.6 x 10° mm4)

- p=2183784mm = 2184 m
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Example 3: Knowing that for the extruded beam
shown the allowable stress is 120 MPa in tension and
150 MPa in compression, determine the largest
couple M that can be applied.

Position of neutral axis (considering origin
of the coordinate system at the base):
__XyA
y= Z_A

125 x (150 x 250) — (125 — 50) X (7 x 50?)
B 150 X 250 — 7 X 502

-y =138.24 mm

Moment of inertia with respect to the
neutral axis:

IN.A. = Zl_‘}'AdZ d

1
Ina = E(150)(2503)
+ (150 x 250)(125 — 138.24)2
T
—{ZX 504+T[X502
X (138.24 — 75)2}
= 165567042 mm*

Maximum tensile stress at the uppermost
corner:

Mc

Omax = i -

50 mm —

125 mm

/ 125 mm

150 mm

My L
1‘_.'Tmm
N‘.A. — l
20 mm._| T
125 mm
!

Mipp % (250 — 138.24) mm
165567042 mm*

120MPa =

= Mpax = 177774204 Nmm = 177.78 kNm  (Controls)

Maximum compressive stress at the
uppermost corner:

Mc

Omax = i -

Mg, % (138.24) mm

150MPa = — e 7042 mm?

— Myay = 179651739 Nmm = 179.65 kNm

150 mm
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Example 4: Determine

maximum tensile
compressive stresses in the beam
due to the uniform load (cross

section of the beam is shown).
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cz=ZX4OX(80X12)+74X(1ZXZ76) |E 30m :I: 15 m —
2xX12x80+ 12 % 276
y
c; = 61.52mm
1 3 ‘1 e Vi =12 mm
IN_A_=2><(E><12><80 +12 % 80 7 \ , |
1
1 A
% 21.522> + 35 X276 X 12% 2 Y2 , - T hT_
+ 276 X 12 x 12.48? o ¢ Idl 80 mm
= 2.469 x 10® mm* A—T" A%/)
From Statics:
—> f«—=12mm > 1=
Mypgxr = 2.025 kNm, Mpyqys = 3.6 kNM < b =300 mm 12 mm
Bending stresses due to M,,,,,1: 4.8 kN
J =
Umax(tensile) ‘ > 6 I\N
2,025 x 10° Nmm x 61.52 mm
B 2.469 x 106 mm*
= 50.5 MPa 0
Umax(comp)
2,025 10° Nmm x 18.48 mm [.125m
a 2.469 x 106 mm* _
= ~15.2 MPa —6.0 kN
Bending stresses due to M,,,,,»: (b)
Umax(tensile)
3.6 X10° Nmm x 18.48 mm
B 2.469 X 106 mm*
2 025 kN-
= 26.9 MPa M 2.025 kN-m
O_max(comp) 0 /\
_ 3.6x10° Nmm x 61.52 mm
2.469 X 10 mm* ‘.—,
= —89.7MPa [.125m
= Omax(tensile) — 50.5 MPa 3.6 kN‘m

- O-max(comp) = —89.7 MPa
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Eccentric Axial Loading in a Plane of Symmetry
We now analyze the distribution of stresses when the line of action of the loads does not pass
through the centroid of the cross section, i.e., when the loading is eccentric.

. /_/ (¢ x .
4—’;74"{-"““31"7’
A B
M
)"
P’ d
P et A 1
A
P My
=2t T
Y Y Y
e ﬂi\\\
f———
> B
C—— — >
— O, + A k\; o, Y > o,
3> p—— 5=
Y Y Y
> % =
= g — —
c <— + Ch o, C—= o
B . = . e
: P -




Example 10: The vertical portion
of the press shown consists of a
rectangular tube of wall thickness ¢t
= 10 mm. Knowing that the press
has been tightened on wooden
planks being glued together until P
= 20 kN, determine the stress at (a)
point 4, (b) point B.

Calculating P and M at a-a section:

(81)

iz N ) |t
I)
pr ur _(l/ f_,, —_— T 60 inm
Al B
j <S80 mm-—-

D B =0-F=P=20000N

ZM=0—>M=P(240mm)

= 20000 N x 240 mm
= 4800 000 Nmm

Calculating section properties:
A =60x80—40x 60 = 2400 mm?

I —160><803 140><603
NA 712 12
= 1840 000 mm*

Stress at point A:
P 4 Mc
7TaAT
20000 N 4800000 Nmm x 40 mm

= 2400 mm? 1840 000 mm?*
— 8.33 MPa + 104.35 MPa = 112.7 MPa

Stress at point B:

_ P Mc
TTAT
_ 20000N 4800 000 Nmm x 40 mm
2400 mm? 1840 000 mm*

= 8.33 MPa — 104.35 MPa = —96 MPa

Section a-a

LZ()() mm *|<—>|

SO mm

I _ F M
N.A.
1 |
f_,,. . 60 mm
A® o B
<S80 mm-—-

-96 MPa

I
l
|
|
|
|
1
T
|
P
B
|

112.7 MPa yﬁ.
i
i

36.8 mm

N.A.
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TBR 4: Determine the magnitudes and locations of the maximum tension and compression normal
stresses within the vertical portion BC of the post (P = 25 kN).

Answer:
Maximal tensile stress: 82.2 MPa at section B

Maximal compressive stress: -79.3 MPa at section C

150 mm

<— 20 mm

20 mm 120 mm

X = 101 mm from lefside to centroid,l, = 10 761 666.67 mm*

Internal forces and moments
F=(25KkN)c0s35°=20.4788 kN=20.478.8 N (vertical component)

V =(25kN)sin35°=14.3394 kN =14.3394 N (horizontal component)
atB M, =—(20,478.8 N)(400 mm + 49.0 mm) =-9,194,981.2 N-mm
atC M_=—(20.478.8 N)(400 mm+ 49.0 mm)+(14.339.4 N)(1.200 mm) = 8.012.298.8 N-mm

Normal stress at H at location B

-20.478.8 N
F_C204788N __, 0058 MPa
A 5.000 mm-~

M.x ( 9.194.981.2 N-mm)( 101.0 mm)

onul

o, = =86.2964 MPa
i 10.761.666.67 mm*
Gy =-4.0958 MPa +86.2964 MPa =82.2 MPa
Normal stress at H at location C Normal stress at K at location B
M x 8.012.298.8 N- 101.0 ¢ - : 2 N-
Ot = X =—( : \ mm)f - mm) — 751967 MPa o . M x = ( 9.194.981.2 N nm1)(-194.0 mm) — _41.8666 MPa
i £ 10.761.666.67 mm e B 10.761.666.67 mm
Gy =—4.0958 MPa —75.1967 MPa =-79.3 MPa o =—4.0958 MPa —41.8666 MPa = —46.0 MPa
Normal stress at K at location € Maximuin tension stress
o, _ Mx _ (8.012.298.8 N-mm)(49.40 mm) — 36.4816 MPa O s = at location B
-bending I 10.761.666.67 mm
o =—4.0958 MPa +36.4816 MPa =32.4 MPa Maximum compression stress

O =|79.3 MPa [C)l at location C
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TBR 5: Maximal tensile and compressive stresses at
a-a are equal to 47 and 67 MPa, respectively. Find
maximal allowable value of P. Based on the
calculated P find the position of neutral axis (1392).

2 mm radius

\j/_\:—_ A: 47 MPa
( A 2 mm radius

8.91 ~ -
91 mm _ e o
) |
-—-—V=-- Pt “\
20 mm
11.086mm | | 20 mm
L 4'—_
B |
— <4 B: 48.9 MPa l )
- B
Section a—a — |<—4 mm

Section a—a

10 X (4 X 20) + 18 X (7 X 22)

5= = 11.086
y 4% 20 + 7 X 22 mm

1 T
I = P X 4 x 203+ 4 %20 x (11.086 — 10)? + 1(24) +m(22)(8.91 — 2)? = 3373.6 mm*

M =P X (32 mm + 8.91 mm) = 40.91 P

P N MC, P N (40.91 P)(8.91 mm) 47 MP P = 3955 N
. = = — = = - = .
Otension MAX = 04 = 0 & 1 = % 22 3373.6 mm* @
P MCy P (40.91 P)(11.086 mm) 67 MP P—5419N
= = — — = — = — - = .
Ocomp MAX = 08 = = T T = 22 3373.6 mm* @
= Ppax = 3955 N
Neutral Axis:
P MCy 395.5 (40.91 x 395.5 Nmm)(8.91 mm)
Oy =— + = 5 + =47 MPa
A I 4x20+mXx?2 3373.6 mm*
P MCy 395.5 (40.91 x 395.5 Nmm)(11.086 mm)
Og =—— = = —48.9 MPa

A 1  4x20+mx2* 3373.6 mm*
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General Case of Eccentric Axial Loading Oy =——

/ / B! B p’ // . S M,
P | [ 3 | .
‘{ﬁ / \\\ // (/ e \<3
f gl \ /
i \ [ ‘
e — > M’ l\\\ C \‘\ P
- -« \/I < *\\\ M. -

Example 11: The tube shown has a uniform wall
thickness of 12 mm. For the loading given, determine
(a) the stress at points A and B, (b) the point where

the neutral axis intersects line ABD. D
A =125x 75— (125 — 24)(75 — 24) = 4224 mm? . H
125 125 1 ~ J4kN
M, = 14 kN (—mm)—szskN (—) B! G
2 2 I . T~
75 75 '
M, = 28 kN (7) (14 + 28) kN (7 mm) i
M, = —2625 kNmm, M,, = —525 kNmm : Sapr
1 1 ;\\'\\\\ & L
I, = E75 x 1253 — EUS —24)(125 — 24)3 A —pFE l
= 7828 252 mm* F \z\mm
1 1 2\ l\'\
I, = —125 % 753 — — (125 — 24)(75 — 24)3
v =17 v ( ; )( )
=3278052mm .
P M,y M, x N.A. * -~
op = —+—A 4 YA 7~
A I, I, >
125
_ 70000N (2 625 000 Nmm)(—~-) D
- 2 4 - >
4224 mm 775828 252 mm % 1.8lmm
(525000 Nmm)(7)
o - 3278052 mm’ = 3152 MPa X
N
R R ~
x y
125
_70000N (2625000 Nmm)(==)
4224 mm? 7 828 252 mm*
(525 000 Nmm)(%S) Y
T T 3278052mmt 1039 MPa A
125 75
P My, Myx, 70000N (2625000 Nmm)(T) (525000 Nmrr)(T) 162 MP
DEAT L I, ~ 4224mm? 7828252 mm* T T3278052mmt ¢
70 000N (2625000 Nmm)(y) | (525000 Nmm)(x) _ 0 -

Alternatively to find N.A.:
4224 mm?2 7 828 252 mm* 3278052 mm#*

16.57 — 0.335y + 0.16 x = 0 (line equation of N.A.)
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TBR 6: The basketball player applies the forces shown to the basket ring. The post has a circular
cross section with internal and external radius of 150 and 200 mm. Find stress at points a, b, and
c on the outer surface of the post at section AB (1393).

T

1000 mm

F = 1500 N (compressive) (1)

M; = 1500 N x 200 mm — 50 N x 1000 mm = 250 000 Nmm (3)

M, = 1500 N x 1000 mm = 1500 000 Nmm  (3)

_—F M, —1500 N (250 000 Nmm) (200 mm)

%a=Y I~ m(2002 — 1502)mm? %(2004 —1504) ®
0, = —0.085 MPa = —85kPa (1)

—F  M,r, —1500 N (1500 000 Nmm) (200 mm)
o= ——t= ®

A I~ m(2002 — 1502)mm? %(2004 — 1504

0, = —0.38 MPa = —380kPa (1)

—F M,(200 cos 45°) M, (200 sin 45°)
=t I * I
—1500 N (250 000 Nmm)(141.4 mm)

~ 72(200% — 1502)mm? © T (200% — 150%)
(1500 000 Nmm)(141.4 mm)
T ®
7 (200% — 150%)

0. = 0.26 MPa = 260 kPa (1)
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Bending of Members Made of Several Materials (E2>E1)

Variation of strain’}irs linear regardless of the mat!?rial properties

o
M~
o

(a)

(b) (c)

Strain and stress distribution in bar made of two materials
To determine position of the neutral axis we convert one material to another so that:

1- Mmax)before transformation max) after transformation

2- Strain distribution remains unchanged so to have the same N.A. for the transformed section

(for material 2 only assuming that material 1 does not exist)

So for material 2 alone the N. A. passes through its centroid. As material 1 is weaker we expect that:

The transformed section becomes bigger in order to have the same bending resistance

Gmax)ili _ Umax)flf

Cp Cp

= Ezémax)ili = Elgmax)flf El

4—]) —>|

A

E,
_)EZIi =E11f _)If =E_Il =Tlli —

For rectangular cross section:

As position of NA is determined we can calculate stress: |« p

04 = E184); = E15A)f =E;

1 —

4—])—>

E1

E2

_ 1 _ —— b =nb B | |
E, I — bh3 b dA

B

o Mc
1 Mo ey = Bep), = By
E1 IN.A.

OB)f Mcg
=n——-
E; Ina.
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Example 5: A steel bar and an aluminium Aluminum —

bar are bonded together to form the
composite beam shown. The modulus of M
elasticity for aluminum is 70 GPa and for
steel is 200 GPa. Knowing that the beam is
bent about a horizontal axis by a couple of

moment M=1500 Nm, determine the Steel\

maximum stress in (a) the aluminums, (b)
the steel.

_E _200GPa _ . _
"TE T70G6Pa _ “©

New width =30 x 2.857 = 85.71 mm

20 mm

20 mm

{

40 mm

|

—| 30 mm

30 mm

20 x (40 X 85.71) + 50 X (20 x 30)
40 x 85.71 + 20 x 30

40 mm

37:

= 24.47 mm -4 ST O e T ..

1
Iva =75 X 85.71 X 40° + 85.71 x 40

Neutral Axis

24.47 mm

1
X (2447 = 20)* + 5 X 30 x 20°

85.71 mm

A

+30 x 20 X (50 — 24.47)2
=936717.3 mm*

1500 x 103 Nmm x (60 — 24.47) mm
Omax (a) = ~ 936717.3 mm?*

(2.857) x 1500 x 103 Nmm X (24.47) mm

= —-56.9 MPa

Omax (sT) = = +111.9 MPa

936717.3 mm*
M M, 1500 000 Nmm

1~ Eyly (70000 MPa) x 936717.3 mm*
=437 m

1_
p

Attention:
_ (2.857) x 1500 X 10° Nmm x (40 — 24.47) mm
9B (sT) T 936717.3 mm*

1500 x 10 Nmm x (40 — 24.47) mm
%8 (a) = 936717.3 mm?*

= —24.9 MPa

= —-71.1 MPa

1
= 2.287 X 10_5% - p =43713.5mm

v
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Example 6: Five metal strips, each 40 mm
wide, are bonded together to form the
composite beam shown. The modulus of
elasticity is 210 GPa for the steel, 105 GPa for
the brass, and 70 GPa for the aluminium.
Knowing that the beam is bent about a Steel
horizontal axis by a couple of moment 1800

Nm, determine (a) the maximum stress in each

of the three metals, (b) the radius of curvature Brass
of the composite beam.

Aluminum

Brass

Aluminum
E, 105GPa 1

M= E T2106Pa 2
_E, 70GPa 1
"2 = F T 2106Pa 3

New width for Brass: 1/2 x 40 = 20 mm

New width for Aluminium: 1/3 x 40 = 13.33 mm

Neutral axis passes through the centroid of the section
which is located at its middle due to the symmetry.

1
Ina ==—=X40x20%+2

1
x(ﬁx20x103+20x10><152)+2

1
X (E x 13.33 x 103 + 13.33 x 10

X 252> = 288888.9 mm*

1800 X 103 Nmm x 10 mm

Fmax (s7) = £ 288888.9 mm?* = 1623 MPa
%X 1800 X 103 Nmm X 20 mm

Omax (5R) = * 288888.9 mm?* = 162.3 MPa
%x 1800 X 103 Nmm X 30 mm

O_max(AL) = i = i623 MPa

288888.9 mm*
M 1800 000 Nmm

1
p EI (210 000 MPa) x 288888.9 mm?*

10 mm

10 mm

20 mm

10 mm

10 mm

<~ 40 mm ——

13.33 mm

1
= 2.967 x 10_5% - p=33703mm =33.7m
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Example 7: A steel pipe and an
aluminium pipe are securely bonded
together to form the composite beam
shown. The modulus of elasticity is Aluminum
210 GPa for the steel and 70 GPa for
the aluminium. Knowing that the

Steel

Y

2

composite beam is bent by a couple
of moment 500 Nm, determine the
maximum stress (a) in the
aluminium, (b) in the steel.

Eq I I
St A2 3= A2 [ =152.64 % 103mm*

Eunz g - %(194 —16%)

s
Itotar = Lniz + 1(164 —10*) = 196.26 x 103 mm*

500 000 Nmm X (+16 mm)

- = 140,
OAlmax 196.26 X 103 mm?* £40.8 MPa

~3x500000 Nmm x (£19 mm) 11452 MP
Ostmax = 196.26 x 103 mm* - Tihec b

l—— 38 mm

1 M 500 000 Nmm 1
—=—= > =3.639 x 107> — — p = 27476mm
p EI (70000 MPa) x 196.26 x 10° mm* mm

=275m

3 mm

6 mm

10 mm

Al
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TBR 7: A wood beam reinforced by an

aluminium channel section is shown in the

figure. The beam has a cross section of

dimensions 150 mm by 250 mm, and the

channel has a uniform thickness of 6 mm. If the 216 mm
allowable stresses in the wood and aluminium

are 8.0 MPa and 38 MPa, respectively, and if

their modulus of elasticity are in the ratio 1 to

6, what is the maximum allowable bending

moment for the beam? 40 mm

mm

6 mm

Answer: y = 108.92 mm from the base

[ =297.35 x 10 mm*

Maiiow =16.2 kNm

250 mm

N.A.

6 X6 =36mm

v

6 X162 =972mm

Transformed section (wood)

131 X (25 x 250) + 2 x {20 X (40 x 6)} + 3 X (150 X 6)
= 108.92 mm

y= 25x 250 +2 x40 X 6 + 150 X 6 150 mm /6 = 25 mm
1 «
Ina =3 25 X 2503 4+ 25 x 250 x (131 — 108.92)? + 2
1
X (E X 6% 40% + 6 x 40 x (108.92 — 20)2)
1
+ (ﬁ x 150 x 63 + 150 x 6 x (108.92 — 3)2)
= 49558213 mm* N.A.
_ M x 108.92 mm _ _
Omax (AL) = 49558213 mm? 38 MPa - M =173 kNm 108.9 mm

1 M x (256 — 108.92)mm

Omax (Wood) = 6 X 49558213 mmA = —-8MPa—-> M =16.2kNm

Transformed section (Aluminium)
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TBR 8: The low strength concrete
floor slab (oy = 10 MPa, E = 22.1
GPa) is integrated with a wide-
flange A-36 steel beam (cy = 165
MPa, E = 200 GPa) using shear
studs (not shown) to form the
composite beam. If the allowable
bending stress for the concrete is
and allowable bending stress for
steel is determine the maximum
allowable internal moment M that
can be applied to the beam. Also
find the curvature based on the
calculated maximal = moment

(1390).

Answer: Maiiow =330 KNm

Section Properties: The beam cross section will be transformed into
Eon 221
Ey 200
by = nb.,, = 0.1105(1) = 0.1105 m. The location of the transformed section is

that of steel Here, n = = 0.1105. Thus,

IyA  0.0075(0.015)(0.2) + 0.2(0.37)(0.015) + 0.3925(0.015)(0.2) + 0.45(0.1)(0.1105)
A 0.015(0.2) + 0.37(0.015) + 0.015(0.2) + 0.1(0.1105)

‘; —
=0.3222m

The moment of inertia of the transformed section about the neutral axis is

= 1
I =231+ Ad® = T (0.2)(0.015%)  + 02(0.015)(0.3222 — 0.0075)? +1—12(0.015)(0.373) + 0.015(0.37)(0.3222 — 0.2)?

+]]—2(0.2)(o.015-‘*) +0.2(0.015)(0.3925 — 0.3222) +]]—2(0.1105)(0.13) + 0.1105(0.1)(0.45 — 0.3222) = 647.93(10°) m*

Bending Stress: Assuming failure of steel,

M(0.3222)
647.93(107°)

Mcy

(Tanow)ss = ——:  165(10°) =

M =33177052N'm = 332kN-m

Assuming failure of concrete,

Mceon )
—’ ’

M(0.5 — 0.3222)

10(10°) = 0.1105
(10 647.93(10°°)

(Taow)econ = 1

M = 32984977 N-m = 330 kN - m (controls) Ans.
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Reinforced Concrete Beams

An important example of structural members made of two different materials is furnished by
reinforced concrete beams. These beams, when subjected to positive bending moments, are reinforced
by steel rods placed a short distance above their lower face. Fortunately, there is a natural bond
between concrete and steel, so that no slipping occurs between them during bending. Since concrete
is very weak in tension, it will crack below the neutral surface and the steel rods will carry the entire
tensile load, while the upper part of the concrete beam will carry the compressive load. To be most
effective, these rods are located farthest from the beam’s neutral axis so that they resist the greatest
possible tensile moment. The diameters of the rods are small compared to the depth of the cross
section.

nA BRI F.

The position of the neutral axis is obtained by determining the distance x from the upper face of the
beam to the centroid C of the transformed section. Denoting by b the width of the beam, and by d the
distance from the upper face to the center line of the steel rods, we write that the first moment of the
transformed section with respect to the neutral axis must be zero. Since the first moment of each of
the two portions of the transformed section is obtained by multiplying its area by the distance of its
own centroid from the neutral axis, we have:

X 1
bx(f) —nd;(d—x)=0 —>§bx2 + ndsx —nAgd =0

Solving this quadratic equation for x, we obtain both the position of the neutral axis in the beam, and
the portion of the cross section of the concrete beam that is effectively used. The determination of the
stresses in the transformed section is carried out as explained before. The distribution of the
compressive stresses in the concrete and the resultant Fs of the tensile forces in the steel rods are

shown.
Mx M(d — x)
o, = ——— oy =n———

IN.A.’ IN.A.



Example 9: The reinforced concrete beam 1
shown is subjected to a positive bending
moment of 175 kNm. Knowing that the
modulus of elasticity is 25 GPa for the
concrete and 200 GPa for the steel,
determine (a) the stress in the steel, (b) the 540 mm

maximum stress in the concrete.

_E, 200GPa _
"SE T 25G6Pa

s
_ _ o2
= 15707.96 mm?

Finding the neutral axis:
X
300x§ —15707.96(480 — x) = 0.

x% 4+ 104.71x — 50 265.472 = 0.

x=177.87 mm and x = —282.6 mm

Calculating the moment of inertia:

1
Ia =3 (300)(177.87)° + 15707.96

X (480 — 177.87)2
= 1.996 x 10° mm*

Stress in steel members:

_nXxXMc 8x175000000 Nmm X (480 — 177.87) mm

(93)

25-mm
7 diameter

l

Y 60 mm

f

~— 300 mm —

j 300 mm R
A h - A
=
; x
A & v NA

AC = nAs - 15707-96

Transformed section
(concrete)

gg =

5 =211.9 MPa
I 1.996 x 10° mm*
Stress in concrete member is compressive and is equal to:
Mc 175000 000 Nmm X 177.87 mm
O, =—=— = —15.59 MPa

I 1.996 x 10° mm*
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TBR 9: A beam has the cross section shown in figure,
and is subject to a positive bending moment that
causes a tensile stress in the steel of 20 ksi (20000 psi
= 20000 Ib/in2). If n = 12 (elastic modulus of steel is
12 times greater than that of concrete) calculate the
bending moment applied to the beam (1391).

D:;lb‘

— N

. e = (i) —
(34~ (6X12)+ =

7

28 {2 )" P @

L
' 2
)') "

1_Lllkﬂ)+ 'ZX€X<S+4)+

2

i

{2 o
3 4 | 5/’\
= §E }ZX’O 17 b/

~

()TZ n M(/ 5 Z))c 000 lé N

q———

ol S {n

6

; T
o M= 146 xls bom (1)

|-o-e.o®-

8"

N

Total As = 3.0 in2

3 , b osewnt
1214, + Wixallz) +

92‘

M (8

(5. 9xle> (ot
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STRESS CONCENTRATIONS
3.0 \\ .
M’ v M
28 “\ \\ ( D b d )
2-6 \\ \ —L‘/
2.4 \\\\\\ \<3= 3
2.2 \\\\2 2
¢ 1.5
1.8 4 \ \\ 11
1.6 \ N\ \‘\‘_\_ %
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~—~——1.02
1.2 —~——01
1.0
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\\\\\\< 19 properties from Statics:
29 =
- \\ \% 11 moment of inertia (Ix,
K 2.0 \\\\ N 1.05 Iy) and product of
18 \Q \m‘ inertia for an area
6 \i\\_\\ (Ixy)! Mohr’s circle to
' - T——F—F—F—= determine  principal
"'—-_.___.____-"
1.4 axes of an area!
1.2
1.0
0 0.05 0.10 0.15 0.20 0.25 0.30
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UNSYMMETRIC BENDING

Our analysis of pure bending has been limited so far to members possessing
at least one plane of symmetry and subjected to couples acting in that plane.
We found that the neutral axis of the cross section in symmetric bending
passes through centroid of the section and coincides with the axis of the
couple. Now consider situations where the bending couples do not act in a
plane of symmetry of the member, either because they act in a different
plane, or because the member does not possess any plane of symmetry. In
such situations, we cannot assume that the member will bend in the plane of
the couples. As shown, the couple exerted on the section has again been
assumed to act in a vertical plane and has been represented by a horizontal
couple vector M. However, since the vertical plane is not a plane of
symmetry, we cannot expect the member to bend in that plane, or the neutral
axis of the section to coincide with the axis of the couple.

We assume that N.A. is directed toward an arbitrary z-axis. An
arbitrary directed moment has a component toward z and a
component toward y. We initially only consider M toward z.

Z E,=0- f o, dA = 0 - N.A.passes through centroid

My

ZMZ=0—>f(—yadi)=M—>ax— 7

Om

ZMy=0—>fzadi=0—>fZ(— ny)dA:()—>

J

The first equation indicates that the N.A. passes through the
centroid of the section and the third equation determine the
direction of the N.A. (directed toward principal axis where M is
applied). The same method is used to determine the N.A. when
only the component of M toward y is considered.

yzdA=0-1,=0- y and z must be principal
v axes of the cross section

M
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The principle of superposition can be used to determine stresses in the most general case of
unsymmetric bending. Consider first a member with a vertical plane of symmetry, which is subjected

to bending couples M and M’ acting in a plane forming an angle 8 with the vertical plane.

N N R —

M,=M cos6 M,=M sin6

Since the y and z axes are the principal centroidal axes of the cross
section, we can use the equation g, = —My/I to determine the stresses
resulting from the application of either of the couples represented by M:
and My:

I, I,
To find the position of neutral axis:

M,y M,z (1
-y=

VA
—tan 9> z
I, I, I,

Thus, the angle ¢ that the neutral axis forms with the z axis is defined by
the relation:

0=—

I,
tang = —tan@
I,
where 0 is the angle that the couple vector M forms with the same axis.

Since I and Iy are both positive, @ and 6 have the same sign.
Furthermore, we note that ¢ > 6 when I > Iy, and ¢ < 6 when Iz < Ij.
Thus, the neutral axis is always located between the couple vector M and
the principal axis corresponding to the minimum moment of inertia.
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Example 12: The couple M is applied to a
beam of the cross section shown in a plane
forming an angle b with the vertical
Determine the stress at (a) point A, (b)
point B, (c) point D.

Decomposing the moment on the principal axes:
M, = 25 cos 15° = 24.15 kNm

M, = 25 sin15° = 6.47 kNm

Calculating moment of inertia about the principal axes:

__XyA
y = >4 =100 mm (from the base)

Y
B =15°
/ B
M =25kN - m
J S0 mm
©
5]
20 mm 80 mm
D
||
'\'&
Y

1 1
IZ=—30><803+30><80><602+E90><803+90><80><202

12
= 16 640 000 mm*

I, = i80 x 303 +180 x 903 = 5040 000 mm*
Y12 12

Calculating stress at point A:

M,c, M,yc,
AL L
24.15 x 106 Nmm x 60 mm

16 640 000 mm*
6.47 x 106 Nmm x 45 mm

= —29.3 MP
5 040 000 mm* ¢
Calculating stress at point B:
Myc, Myc,
= — 4 —
BT,
2415 x10° Nmm x 60 mm
16 640 000 mm*
6.47 X 10° Nmm X 45 mm
- = —144.8 MPa

5040 000 mm*
Calculating stress at point D:

M,c, M,c,
= 4 —
=TT
24.15 x 10 Nmm x 100 mm

16 640 000 mm*
6.47 x 106 Nmm x 15 mm

5040 000 mm*

= +125.7 MPa

D
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Example 12 (continued):

Finding position of the neutral axis
(Method 1):

We know that the neutral axis passes
through point C where stress is zero. If
we can find a second point where stress
is zero we can find the position of
neutral axis.

_ Mzcy 4 Mycz

g
o, L,

24.15 x 10 Nmm X 20 mm

16 640 000 mm*
6.47 x 10° Nmm X 45 mm

5040 000 mm*
= +86.8 MPa

As the stress at point A is negative and
at point E positive there should be a
point in between where the stress is
zero. As the variation of stress is linear
this point of zero stress can be found

easily:
293 A0 29.3+868 Ao+ EO
- = =
868 EO 86.8 EO
116.1 80 £O = 9.8
—_— = .
868 EO mm
_ . (59.8 - 20) _ 4150
@ = arctg c = 41.

Finding position of the neutral axis (Method 2):

16 640 000 mm*
5040 000 mm?*

L
tang = —tanf =

Iy

tan 15° - ¢ = 41.5°

Method 3:

Best Method to determine NA:

M,c, M,c,
= 4 —
oA=L T,
24.15 X 10 Nmm x Y

16 640 000 mm*
6.47 X 10® Nmm x Z _

5040 000 mm*

Y = 0.8845 Z (NA equation)
OR

Myc,

24.15 X 10 Nmm X Y

16 640 000 mm*

6.47 X 10° Nmm x (=Z) _

5040 000 mm*

Y = 0.8845 Z (NA equation)

0
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Example 13: The couple M is applied to a beam of the A
cross section shown. Find stress at point A.
Calculating section properties: Uy | 40 mm
1 1
I =—10X903+2(—40X103+40X10x402) =
Y12 12 — : ° 10 mm
= 1894 167 mm* M |9 kN C
1 1 M = 1.2KkN -m ' g
12=E90><103+2(E10x403+40x10x252) : 4”;”‘“
= 614 166.7 mm* =
I,, = dA = (0)(0)(10 x 90 25)(40)(40 x 10 - — -
v fyz (0)(0)(10x90) + (25)(40)(40 x 10) 10 mm —{ =70 mm—»‘ <10 mm

+ (—25)(—40)(40 x 10) = 800 000 mm*

Finding principal axes of the section (Mohr’s circle):

y = 1.894 X 10° mm*
= 0.614 X 105 mm?*
= +0.800 X 105 mm?*

I
L, 7

I +1 I,—1
I, =lpg —R= yz Z—J(yz 92 +1,,> =229 666.8 mm*

I, +1 I,—1
1u=1a,,y+1!;’=y2 Z+ (y22)2+1y22=2278667mm4 ,
20p = 22— 590 9% = 0.625 - 26 Y<+Iy>
AN b, = T, = 1894167 — 6141667 _ 0>~ 4lr yz
2 2

= 51.34° - 0, = —25.67°
Decomposing the moment on the principal axes:

M, = 1.2 cos(—25.67°) = 1.0816 kNm
M, = 1.2 sin(—25.67°) = —0.5198 kNm

Finding coordinate of point 4 in uv system:

_ MvuA MuvA
“TTL, T
(UA) _ [cos 0p —sin BP] (ZA) u
u,/  lsin6p cosép [\y,
_ [cos(—25.67°) —sin(— 25.67°)] (45) 1% A
~ |sin(—25.67°)  cos(—25.67°) |\45 N.A:- @ N ]
_ (60.05 o l 40 mm
- (21.07) o 25.67" o \/l/ |
Calculating stress at point 4: zZ S ' 10 mm
a, =M+M = l (:\ o
A I, I, M=12kN . .-m 26-mm
(1.0816 x 106 Nmm)(21.07 mm) + e
B 229 666.8 mm*
5198 X 10° N . -
_ (05198 22;)862;771)(640 05 mim) 10 mm — [<70 mm-»‘ <10 mm
mm
= —112.97 MPa 112.37 _40 112.97
Calculating stress at point B: 80.3 BO A
<v3) _ [cos fp —sin GP] (ZB) 1%
uy) = lsings  cosey |y, 11297 +803 _ 45 NA
_ [cos(—25.67°) —sin(— 25.67°)] (45) 80.3 BO .
" |sin(—25.67°)  cos(—25.67° 0
40.(56 ) ( ) BO = 18.7 mm
- (—19 5) i
Myuz M,vg ' BD = 45 tan25.67° = 21.63 mm
Op = —— + ——
L, L, I
4 (10816 x 10° Nmm)(195 mm) tang = I—vtan(— 2567°)
229 666.8 mm* 1296l o 80.3
(0.5198 x 10 Nmm)(40.56 mm) = mtan(—25.67°)
227 8667 mm* @ = —2.77°

= +80.3 MPa
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TBR 10: The moment acting on the cross section of the unequal-leg angle has a magnitude of 14 kNm and
is oriented as shown. Determine: (a) the bending stress at point H, (b) the bending stress at point K, (c) the
maximum tension and the maximum compression bending stresses in the cross section, (d) the orientation of
the neutral axis relative to the +z axis. Show its location on a sketch of the cross section.

150 mm

-

Y

200 mm

Answer: Centroid location: 64.18 mm (from bottom of shape to centroid) and 39.18 mm from right
edge of shape to centroid. Moment of inertia about the z axis (Iz): 25,059,086.23 mm* Moment of
inertia about the y axis (Iy): 12,133,386.23 mm*. Product of inertia about the centroidal axes (lyz):
10,207,907.81 mm*. Bending stress at K: -82.6 MPa compression. Maximum tension and compression
bending stresses: 101 MPa and -82.6 MPa. Orientation of neutral axis is shown.

_ 150 mm Compression
bending
i stresses

Neutral
axis

Hr
40.07°

A 4

|4 kN-m

Tension bending

stresses 9 mm
(typ)

min




