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CHAPTER 6: Shearing Stresses in Beams

When a beam is in pure bending, the only stress resultants are the bending moments and the only
stresses are the normal stresses acting on the cross sections. However, most beams are subjected to
loads that produce both bending moments and shear forces. In these cases, both normal and shear
stresses are developed in the beam. The normal stresses are calculated as explained in Chapter 4,
provided the beam is constructed of a linearly elastic material. The shear stresses are discussed in
this and the following two sections. The following figure expresses graphically that the elementary
normal and shearing forces exerted on a given transverse section of a prismatic beam with a vertical
plane of symmetry are equivalent to the bending couple M and the shearing force V.

Let us now consider a small cubic element located in the vertical plane of symmetry of the beam
(where we know that txz must be zero) and examine the stresses exerted on its faces a normal stress
oxand a shearing stress txy are exerted on each of the two faces perpendicular to the x axis. But we
know from Chapter 1 that, when shearing stresses tx are exerted on the vertical faces of an element,
equal stresses must be exerted on the horizontal faces of the same element. We thus conclude that
longitudinal shearing stresses must exist in any member subjected to a transverse loadin

(we also conclude that shear stresses are zero at the edges: imagine this element is located at either
the top or the bottom). This can be verified by considering a cantilever beam made of separate
planks clamped together at one end. When a transverse load P is applied to the free end of this
composite beam, the planks are observed to slide with respect to each other. In contrast, if a
couple M is applied to the free end of the same composite beam, the various planks will bend into
concentric arcs of circle and will not slide with respect to each other, thus verifying the fact that
shear does not occur in a beam subjected to pure bending. As a result of shear stress, shear strain
will be developed and these will tend to distort the cross section in a rather complex manner. For
example, consider a short bar made of a highly deformable soft material and marked with grid lines
as shown. When a shear load V is applied, it tends to deform these lines into the pattern shown and

will cause the cross section to wrap. Although this is the case, we can generally assume the
cross sectional wrapping due to shear is small enough so that it can be neglected.

A |

(b) After deformation

(a) Before deformation

Longitudinal shear failure in timber beam
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Shear on the Horizontal Face of a Beam Element

Consider a prismatic beam AB with a yvertical plane of symmetry that supports various
concentrated and distributed loads. At a distance x from end A we detach from the beam an element

CDD'C of length Ax extending across the width of the beam from the upper surface of the beam to a
horizontal plane located at a distance y1 from the neutral axis.

P, |P,

w Y

: M
Ve “ Sy i

Y

Now consider the forces that exert on this element:

w

\"7(/~ V,’) :Z F,=0- AH + % (6¢—op)dA =0 whereo = My/I
Mp-—-M AM VAx
AH:—( P C)f ydAz—f ydA =——2Q
C D I 4 I J, 1
o- dA op dA 14 1%
C¢ ”(/ AH=—QAx—>q=—Q
AH 1 1

Q: first moment with respect to the neutral axis

L ofthe portion A of the cross section of the beam

q: horizontal shear per unit length (shear flow)

d S a : , .
Q=A ”TA = AY: A is the area of the top (or bottom) portion of the member’s cross section area
above (or below) yi, andY is the distance from the neutral axis to the centroid A. The average
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shearing stress tavg on that face of the element is obtained by dividing AH by the area AA of the face.
Observing that AA = t Ax, where t is the width of the element at the cut, we write:

1%
_AH_TQAx_VQ
Taows 74T Ttax It

4

Tavg = F

Tavg = the shear stress in the member at the point located a distance y from the neutral axis. This
stress is assumed to be constant and therefore averaged across the width t of the member

V = the internal resultant shear force, determined from the method of sections and the equations
of equilibrium from “Statics”.

I = the moment of inertia of the entire cross-sectional area calculated about the neutral axis

t = the width of the member’s cross-sectional area, measured at the point where T4y is to be
determined

Q = AY, where A is the area of the top (or bottom) portion of the member’s cross-sectional area,
above (or below) the section plane where 4,4 is measured, and y is the distance from the

neutral axis to the centroid of A.

The above equation is referred to as the shear formula . Although in the derivation we
considered only the shear stresses acting on the beam’s longitudinal plane, the formula applies
as well for finding the transverse shear stress on the beam'’s cross-section. Recall that these
stresses are complementary and numerically equal.

1 the lower and upper
rfaces of the beam tyx = 0.

Cd AA i 7= 0
AH' et - / follows that Txy = 0.
< D! "'\
C' il a2 | €\ .0
F ° \ @
LK \
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Limitations on the Use of the Shear Formula.
One of the major assumptions used in the development of the shear formula is that the shear

stress is uniformly distributed over the width t at the section. In other words, Average value of
stress (Tqpg) is calculated because it is assumed that shear stress remains constant across the

thickness which is only true for thin sections.

!

A

(@) A “wide beam,” (b) A “narrow beam.”

NA
A
NA
(Tn A)avg - -~
: (tNA)an
Y —1
(tna) = 1.03 (tya)
(na) o = 199 (i), A max Have
(¢) Shear-stress distribution in the (d) Shear-stress distribution in the

“wide beam” “narrow beam”
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Example 1: Distribution of Shear Stresses in a Rectangular Beam

The rectangular beam of width b and height h is subjected to a transverse shear force V. We aim to
determine the average shear stress as a function of y, sketch the shear-stress distribution, and
determine the maximum shear stress on the cross section.

Y
Y
A’
‘ |
o L d
— c==h
4 Y y &
h . ‘
( =§/I
| -— b—»
VQ
Tavg = F
= 1 1 2 2 ¢ ¢ yz 1 2 2
Q=74=30+Axbc=y) =50 =y} or 0= [ yda=[ ybay=b2| =Sb -y
y y y
1 1 2
— — hp3 — 3_23.3
I_lzbh 12b(ZC) 3bc
t=b>b
1
vQ Vb= 3V <1 y2> 31/(1 y2>
Tavg:—: = — —_— | = —— —_——
It (% bc3) (b) 2 2bc c? 2A c?
3V
aty=0—>rmax=zz and aty=2c->1t=0
y The relation obtained shows that the
maximum value of the shearing stress in a
+c beam of rectangular cross section is 50%

larger than the value V/A that would be
obtained by wrongly assuming (as in
Chapter 1) a uniform stress distribution
across the entire cross section.

]

' max
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Example 2: Distribution of Shear Stresses in a Circular Beam
The circular beam of radius r is subjected to a transverse shear force V. We aim to determine the
maximum shear stress on the cross section.

Y
, ., Y NA.
_/
Ve _VGRXFr)_av _av
5 X It (%m,z;)(zr) 3nrz 34
RN
dyt/ .

= Q=fydA=fy(2mdy)—>
y R

R
2
U Onac = |, 2R3ty =5
0

—»‘ d] -«
Example 3: Determine the maximum shear stress in the ] P
beam with a hollow circular cross section as shown.

VQ
Tmax F
4r, w 4, w 2
Q=3 X3m g X7t T3 )
1 1 T
I = Zm‘z“ —Zﬂrf = Z(TE} — 1)t =2(r; —11)
2.3 _ 3
Vo ng(rz— ) 4P 1} + 1y + 17
Tmax = = =

It %(7'24 —1) X 2(rz — 1) 3w =
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Example 4: For the beam and loading shown, consider section n-n and determine the shearing stress
at (a) point a, (b) point b, and (c) the largest shearing stress at section n-n.

180 kN ~— 160 mm——

! l a ‘ 20 mm
°
A ! 4 B B 100 mm
— —ofts— ble| —M
. 30 mm
~— 500 mm —=—500 mm —>
» [— — y -

30 mm \\_\ _// 30 mm

-

20 mm

49,
T=—
It
_ _ YyA _ 90x(20x160)+2x[40x(80x20)]

From Statics: V =90 kN, y = SV X105 2XB0X20

= 65mm

(position of N.A.with respect to the lower end)

1 1
Ina =E160 X 203 + 160 x 20 X (90 — 65)2 + 2 X EZO X 80° + 80 x 20 X (65 — 40)>

= 5.81 x 10° mm*
Part (a): 0, = A = (90 — 65) x 20 x 160 = 80 000 mm?

VQ, (90000 N)(80 000 mm?)

- = 30.98 MP
It,  (5.81 x 106 mm*)(2 x 20 mm) 4

Tqg =

_ 3
Or: Q, = A = —(65 — 40) X 20 X 80 = —40 000 mm?, 7, = “22 = ((108010><0112)2(mj:4())?2001?nn:n)) = —30.98 MPa

Part (b): Q, = ¥4 = —(65 — 15) X 20 X 30 = —30 000 mm3,

VQy, _ (90000 N)(—30 000 mm3) _
It,  (5.81 x 106 mm*)(20 mm)

T, = —23.23 MPa

Part (c): Qus = A = 2 x (£ x 65 x 20) = 84 500 mm?,

_VQy __ (90000M)(84500mm®)
Tmax = 07T (581 x 106 mm#)(2 x 20 mm) - 4
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2.4 kN 4.8 kN
Example 5: For the beam and loading b
shown, determine the minimum required —'I ' |<—
width b, knowing that for the grade of B C —_
timber used, oan = 12 MPa and tan = 825 kPa. A D 150 mm
T
From Statics: Ra = 3.2 kN, Rp = 4 kN F—1m—t—Im—f—Im—
Critical point is C:
| | |
Mmax = 4 kNm, Vmax = -4 kKN : : :
| | |
| | |
M c
Omax = mIax - v (kN)A i : i
3.2 ' i !
(4 x 10 Nmm)(75 mm) : |
12 MPa = 1 : :
—b X 1503 mm*
12 : X
- b =88.9mm >
VQ
Tmax = F)max -
0.825 MPa M
75 3 kN
(4000N)(7><b><75mm) (kNm)
= X
1 3 4
13 b % 1503 mm*)b >
- b =48.5mm
Answer:

— b =889mm
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Example 6: A beam of wide-flange shape is
subjected to a vertical shear force V = 80 kN. The
cross-sectional dimensions of the beam are shown.
Determine the distribution of shear stress over the
cross section of the beam.

At upper surface of the cross section:
=0

At point A on the flange:
_ve
It

T

I=%15x2003+2x{%300x203+20x300x
1102} — 155.6 X 105 mm*

Q =Ay =20 x 300 x 110 = 660000 mm3
t =300 mm
V@ (80000 N)(660000 mm3) A a
It (155.6 x 106 mm4)(300 mm) [ I A DR— € e,
= 1.13 MPa
At point A on the web:
t =15mm
VQ (80000 N)(660000 mm?) | |
~ It (155.6 X 106 mm*)(15 mm)
= 22.62 MPa
At point C on the mid-web:
Q =Ay =20x300x110+ 15 x 100 x 50 Note that most of the shear stress
= 735000 mm? occurs in the web and is almost
t =15mm uniform throughout its depth, varying
. Vo _ (80 000 N)(735000 mm?) _ 959 Mpg [ToM 22.6 MPa to 25.2 MPa. It is for this
It  (155.6 x 10 mm*)(15 mm) ' reason that in practice, one usually
assumes that the entire shear load is
carried by the web, and that a good
approximation of the maximum value
1.13 MPa of the shearing stress in the cross
22.6 MPa section can be obtained by dividing V
by the cross-sectional area of the web:
% 80 000 N
25.2 MPa fmax =4 15 % 240 mm?2
= 22.2 MPa

- — — — — af—

Parabola
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Example 7: For the beam and loading shown, each screw is good for supporting 2 kN lateral load to
avoid longitudinal sliding at a-a, determine the minimum required distance between screws.

Lag screw 3 kN/m
i 4 ? )"/
% _ | by v Vv d i%
i R
f I
V g ;. 7 Z

4
9kN|

1

|

L |

|

o

NA 500 I
|

[

i

|

rb

—— ——
-
-

S

- é =—|

.!.-
X >
x
z

(a)

U .
I 1.5m -
50 e——200 —{ 50 [<— -

Voax = 9 kN and Qq_y = 594 = 225 x (200 X 50) + 200 x (50 x 100) + 200 x (50 x 100) =

3
4250 000 mm3, [ = 2.36 x 10 mm* > q = VTQ _ (90002126(1125311(24% ) 162 N/mm
Spacing of screws: S=(1mm)(2000 N)/16.2 N =123.45 mm
I mm 16.2N S =120 mm is okay 7 57 7
%//// %l /—Plane
S 2000 N %’/ [ | ofcue:at
------------------------- (015100 (4 ) [ nm——— /
NA /
Ql=Z37A=225><(300><50)+175><(50><50) /
— 225 % (300 X 50) — 175 X (50 X 50) X 2 %
= —437 500 mm3 /
%,
OR: Q; = Y yA = —175 x 50 x 50 = —437 500 mm?3 .
_ V@, _ (9000 N)(—437 500 mm3) _ Le6a N ] -
N T T o 3ex 100 mmr 668 N/mm %
I U Plane
f Cut: q2
Q2=z37,4=225><(300><50)=3375000mm3 v o
NA
_ V@, _ (9000 N)(3 375 000 mm?®) _ 2870 N
2= = 2.36 x 10° mm* i /mm 100
check: q, = q + 2q, » 12.87 = 16.2 + 2(—1.668) v |
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Shear in the Longitudinal Direction of a Beam Element

NS

F+4+dF

(b)

(a)

:Z F,=0- AH +f (6¢ —op)dA =0 whereo = My/I
A

14
(Mp — M¢) AM VAx vQ vQ AH TQAx vQ
AH:—f ydA=—J ydA=——Q > AH =—Ax > q=——
1 A 1), 1 1 1

Tag T A4 T Ttax It



Example 8: The built-up wooden beam
shown is subjected to a vertical shear of
8 kN. Knowing that the nails are spaced
longitudinally every 60 mm at A and
every 25 mm at B, determine the
shearing force in the nails (a) at 4, (b) at
B (Given: Ix = 1.504 x 10° mm?).
Dimensions are in mm.

14
q= TQ’V = 8000 N,I = 1.504 x 10°mm*,

Q =?

At B:

Q= ZyA — (200 — 25)(400 x 50)
+2(200 — 75) X (50 X 50)
= 4125000 mm?3

_VQ _ (8000 N)(4 125000 mm®)
T 1.504 x 109mm?*

q=21.94N/mm 25 mm

25 mm

F=qxS5=2194 N/mm X 25mm = 549 N

AtA:

—‘50' 300 |50
| B

. Tf
A | 4100
I _ ¥
50
C
400 ° X
—|| <~ 50
200
A A
| SS—— —_—
p Y

——

—‘5() <~ 300 4‘ 50
| B
[— e
A \ /]\ A 1(3()

200 20
| N.A.

N.A.

Q= 237A = (200 — 50)(100 x 50) = 750 000 mm3

_VQ _ (8000 N)(750 000 mm?)

I 1.504 x 109mm*

= 3.99 N/mm

F=qxS§=399N/mmx60mm = 239.3N
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Example 9: A box beam is constructed from four boards nailed together as shown. If each nail can
support a shear force of 30 N, determine the maximum spacing (s) of the nails at B and at C that beam

will support the force of 80 N.

180N

0000000000000 0000000000000000O00O0O0

—

S

Iya = i75(753) — i45(453) = 2295 000 mm*
NA ™12 12

0, = 74 = (30)(75 x 15) = 33 750 mm?
_1vQ, 1(80 N)(33 750 mm?)
U= T T 27 2295000 mm*

30N
1= 0.588 N/mm

= 0.588 N/mm

=51mm

0, = A = (30)(45 x 15) = 20 250 mm?
_1VQ, _1(80 N)(20 250 mm?)
2= 57 T 327 2295000 mm*

30N
*1 = 0.353 N/mm

= 0.353 N/mm

=85mm

OR:
Q; = yA = (30)(60 x 15) = 27 000 mm3

VQ; _ (80 N)(27 000 mm?)
I 2295000 mm*

_ 60mm _ 15mm
[~ ] A
15 mmI B I
= C
60 mm
v
1 A
15 mm
| I - V
B 75 mm R
" “ill.]'llllx“" 15
¢ Yo mm
30 mm
N.A.
(1) | I -

We know: g; = 0.588 N/mm - q, = 0.941 — 0.588 = 0.353 N/mm

OR:
Q, = yA = (30)(15 x 15) = 6 750 mm3

VQ, (80 N)(6 750 mm?)
I 2295000 mm*

We know: q; = 0.588—— - q, = 0.235 — 0.588 = —0.353 N /mm

+—>

60 mm

15 mm
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Example 10: Determine the shear stress distribution in the
flanges and the web of the thin-walled beam with the cross
section shown subjected to the shear force V= 60 kN.

IN.A. = 222 X 106 mm4

For the web:

162

Q= ZyA (1——)(116)(154)+(694——)(81><s)

= 134337.3 + 562.14 s — 4.05 s

Vo (60 000 N)(134337.3 + 562.14 s — 4.05 s%) mm3

Tweb = F =

(22.2 x 106 mm*)(8.1 mm)

at s = 0 (upper end of the web at point B) - 7 = 44.8 MPa

at s = 69.4 mm (mid — web at point C) » 7 = 51.3 MPa

For the flanges:

_ 11.6
Q=yA= (81 _T) (11.6 s) = 872.32 s

VQ _ (60000 N)(872.32 5) mm?

ffiange = 1 = (222 x 106

ats = 0 (point D) >t =0MPa

at s = 72.95 mm (point E) - 1 = 14.8 MPa

Calculating shear flow:

vQ (60000 N)(872.32s) mm> _

mm*)(11.6 mm)

q1 =

154

— =1t =
1" (22.2 x 106 mm*)

mm

L

154 mm—

11.6 mm |y

|
1 ml S 81 mm
N.A. 69.4 mm

11.6 mm y
| E S
__ | e HEED
T [

. §_.1 mm
Y/ N.A.
162 mm C

At mid flange (s = Tmm): g1 =q, =181.5 N/mm

J

VQ . (60 000 N)(134337.3 + 562.14 s — 4.05 s2) mm?
Tt =

I - (22.2 X 106 mm*)

at s = 0 (upper end of the web at point B) = q; = 363 N/mm

Note that at Bwe have: q; + g, = g5

1- tislinear in the flanges and parabolic in the web

2- tand q are parallel to the walls

3- Ttisequal to zero at free surfaces

4- VQ/It holds true only where we have thin wall
5- Equilibrium of forces and moments is satisfied

6- Shear flow is similar to fluid flow, i.e.,, 1 + g2 = q3

154 mm——

14.8 MPa

il )\\\_ -
//l/ " 1 1 [ Ny
—s—
<~— <« <| 44.8 MPa

QC leq 1 \

1 qs3 )\

51.3 MPa‘}

NA

— e e

- = e — - =P

~—uy
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TBR 1: Determine the shear flow distribution in the
beam with the cross section shown subjected to a
shear force of V.

Yy

& z
ST
[<<r r 4
1 4
r
t<<r
V4

— 3
A=2nrt, |, = [,=nr't




TBR 2: A shear force of 450 N is applied to
the box girder. Determine the shear flow at

points C and D.
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- _(0 )(0.4%) — —(0 18)(0.38%) = 0.24359(10 %) m*

Qc=0

Then referring to Fig. b,

Op = ViA} + YA, = 0.195(0.01)(0.09) + 0.15(0.1)(0.01)
= 0.3255(107%) m®

Thus,
VOc
jc = I =0
o= YO0 _ 450(10°) [0.3255(1073)]
e

I 0.24359(107%)

= 601.33(10°) N/m = 601 kN/m

Al
C
Referring to Fig. a, due to symmetry A¢ = 0. Thus

_ C I

i A

9:09m
0.0/
- 04
foigem "
D

(b) |22 X
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TBR 3: Screws are placed at distance of 250 mm throughout the length of the beam and their

diameter is 6 mm. The welding is done throughout the length. Find maximal value of Mo so that (1) the

maximal tensile bending stress in the beam remains smaller than 120 MPa, (2) shear flow (q) in the
weld remains smaller than 38 kN/m, and (c) shear stress in each screw remains smaller than 90 MPa

(1390).

[ 100|mm——
b4 Mo | |120mm
. N\ = X Z A
H:° = ! > Weld Neutral Axis
A B =C 100 mm
2/3m 43m | _
! I 40 mm
18 i
_,I_LEJ_L_
SEE
88
28RS
A
e o
A 8./ e X
et e 4m —— Zhyfpeo o Re s - bol2
&
ea 19(, Zf'g' =0 .5 Rp = Mo/Z
v @)
Ho/l | [ l ’.'[I
nw
Moy
)
(7 = (106 x 20 x110) +(i00 x 20 x S) +2(10xY0x20) L
Solution .. (e x20) + (b0 x20) 4 2C 101 u0)
a) ) QI}= L + I, +I3 . t
.= fe, 009 _ Mo 533308 - -L X 100 K %" + (0- :o) X100 x2 = 3,265 00 mm’
8 3 I} T I e | -
G = Mo gofO No x335x10 A—-G; ,Ia-.L £ 20 x 160 +C710 Q)KIO'GK% 2,466 10 M
B > T, =T

ol 10 x 106 X(O
Cleqw‘ A 70 .._2[‘2:((0)(&\!«0 -q—Q‘U 20 X UO] o, ?

‘ 5y
Iar—7,&éow mm? :zwom m

l

[

- |7

ho & 120x10°x 2B K" 2p 263 Um }
|

|

{

3,3 x 0" e
b) ) a,’chl = 1_ ";;,(omxaoqo x0,050 :.M_°,\!ox
-5
i Va
E‘MM:“T—z = {o:o»«oo&xoou)_ £y x 10 %ex“m— x 0,20 <3 q,A 340;1(0».21)(6066
-6 //
fog 20308 x Fduous’_ 1ygqe mm e T4t b

¢ g T (mo)vw = £4é5 bm



(147)

TBR 4: Maximal force that can be carried by the pins is 450 N (S=8 cm and S’ = 1.5 cm). Find
maximal W (1393).

D
l \ T em
/Q/O - /,’ “+1cm

/Q/o SIS /3/3 cm
©10 cm )

//‘/K/— —_— ; }

zMB =0-44,-6w(1) =0, » A, =1.5w(N), B, = 4.5w(N)

From Statics (draw shear diagram) we have:

Voo = 2.5W N @

_0.5(10)(D) + 2 x 2(4) (1) + 7(12)(1) _ 5 @
y= 10x1+2x4x1+12x1 =3.5cm

Ina = [%(10)(1)3 +10)WEA.5-0.57|+2 [%(1)(4)3 +@W(DE.5-27

+ 11—2(1)(12)3 +(1)(12)(7 - 3. 5)2] =410.5 cm* @

Q.,=(1H)4)(B.5-2)=6cm? @

Qp = (1)(12)(7 — 3.5) = 42 cm® @

/4 2.5w(6cm3)(8cm
F,= Q“s—>450= ( ) )—>w=1539N/m @

I 410.5 cm?
Voo | 2.5w(42cm®)(1.5cm)
FD=TS - 450 = 210 Scm? - w=1173 N/m

Woax = 1173 N/m @
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Shear Center

Example 11: Determine the shear flow distribution in the beam
with the cross section shown subjected to a shear force of V.

v 1, 1, (h)2_12
q="- ,I—lzth +2{12bt + bt 5 —12th (h + 6b) A

|<— -b —>| t

ngts . Vhts
I 21

For the flange: Q = YA = % X (ts) - q =
dF = q ds

F D

1 =

F’ N.A.

* vthp?

; fb < fb Vhts < d Vht s2
= q s = _— S =
0 0 0 4]

21 —721 2

. Vthb?
F=F =" (ZFX=O) D

4
V= [ que» xds' (LF, =0), BUT T #0

— FBD is wrong — There should be an internal twisting
moment. Therefore — q # VQ/I - q =VQ/I + qtwisting

To eliminate twisting when bending : Ve = Fh

Placement of load to eliminate twisting.
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Important Points Regarding the Shear Center Concept \

1- Point O is called the shear center.
2- The location of shear center is only a function of
the geometry of the cross section.
3- The shear center always lies on an axis of
symmetry of the cross section (see the figure). UV
4- For the beam shown below the shear center is

located at point O.

(a) Shear stresses (b) Resultant forces on elements (¢) Placement of V to eliminate twisting

5- In the case of an oblique load P, the
member will also be free of any twist if p
the load P is applied at the shear center
of the section (see the figure).

6- Combined stresses can be calculated Sl Ak i Bt —8 — -
using shear formula developed in this
chapter and torsion formula developed . e
in chapter 3 (see below and refer to
Example 6.07 of Beer and Johnston, 6th

version).
b4 v ¥ /,_—, brf
B 1A B [E—A » p— o ;:1
=
A [
t)l \ — * g — 4 l + a ] r\
—_ {C — 0 — () l l 'Ij
1 W_. .
N —T: p I N  —
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Example 12: Determine the location e of the shear
center, point O, for the thin-walled member having the
cross section shown. The member segments have the
same thickness t.

1
=5 i 03 . o2
I'= 12 (Sil’l 450) (2? sin 45 ) + Z(bt(d sin 45 ) )

td
== T(d + 3b)

Q = yA = (d sin 45°)(st) = (td sin 45°) s

Ve V(td sin45°) s _ 3Vsin45°
-7 T d@d+3b)°

2
%(d+3b)

F_fb p _fb3Vsin45° p _3bzsin45°V
~ L 9Y T ) d@+3p)° " T 2d(d + 3b)

V X e = F(2d sin 45°) = 3b sin 457 V(2d sin 45°)
e = Sin —zd(d+3b) Sin
32
® =2+ 3b)

TBR 5: Determine the location e of the shear center,
point O, for the thin-walled member having the cross
section shown. The member segments have the same
thickness t.

3

I1=2 1t<1>+1 t( +1 )2 +J7ZT in9)2(rt do
== — — — — ﬁ
1 ST STelr g - (rsin@)“(rt do)

[ = 3.15413 tr3

1 1 7
Q= Ert (r + Zr) + f (rsin @) (rt d9) = (0.625 + cos 0)tr?
9

_VQ _V(0.625 + cos 0)tr? _ V(0.625 + cos 0)

i 3.15413 tr3 ~ 3.15413r
Vs Vs
v 2 Vr 2
Xe=r1rX J_% (qrde) = 315213 f_% (0.625 + cos ) do -

e=126r

B3| =
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v
Example 13: The cross section of an
unbalanced wide-flange beam is shown in
the figure. Derive the following formula for -
the distance h1 from the centerline of one [ ! —{ 1
flange to the shear center S: .o
b3k 5 C
VT tb3 + tyh3 y
hy hy ——
< h >
b, s
v, V&G -3 xst
for the left flange: q; = T = i y
e ~
)1
v fbl i fbl V(b —s) X st; . Vb3t, Z —=h A
= qds = S =
S A o 21 121 S C l
o <—/Zl > /Ip_ >
3 < >
Vféltl h _bity | "
ZMA=O—)F1h=Vh2—)h2 =T=ﬁh

1 3 1 3
hl = h_hz and I=Et1b1 +Et2b2

t,bih

L7 b3ty + bit,

FOT'b1=b2 and t1=t2_) h1=§

Note that shear flow in the web (horizontal part) is zero because if you cut it at

any section Q becomes equal to zero.
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TBR 6: A beam with the cross section shown undergoes a downward
shear force of 34.5 kN. Find center of shear. If this shear force is
applied at the center of shear, find distribution of shear flow on the
cross section as well as magnitude and location of maximal shear
stress (1391).

by =2cm, b, = 8 cm,
t=1cm and h=11cm

1 E((a)(ll) -‘Li(‘ﬁ)(\o) = 690 Cw

/&,gjdl@,l 5‘17’0/4
H

b
\RI =/ ‘q’dz‘

1T 2
Ly o
Ma — R,
g Yth o
27
7 :V_té' b ¢ s
ML R g s Yhbe | 53
ar
q ‘Ci': ‘7+ = A, 7‘5‘ @
a=la 1+ 9y KJ\'/&“ q
- V@s :
’s T 7 Qaclrh)th
2.

”ﬁ’wt'i“’;*ﬁ

boap (R0 ) ()

qmmt = qumL o Q’c,:: 73(35") = 3.5043 ‘U\/c\.

— ; 2
j:u“ = Jo = qc/f = 3.5643 ‘,%;,,."" CQ63 Mfcx
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TBR 7: Find center of shear for thin wall ,_
. a
beam shown as functions of a, b, and h. If "
the shear force of V is applied to the B
center of shear, determine position and .S '
. . A A
magnitude of the maximal shear stress . C
> 2
(1392). h
9)
1(1
Y
1—21th3+2bt(h)2 1th 2 3—ths+bth2 t(h — 20)° «h—>
BREY 2) "1zt 2ar =t 12 b
For the small vertical parts: Q = st (g —a+ %),
h s y
q_ﬂ_stV(j—a+7) s
1 I o —
h S %
v _fastV(E—a+7)d _tVfa (h +S>d ﬂ
L= . 7 s = ) S > a > s 5
_tV(h a3+a3 _ tVa? 3h_4 - S
=7\a® "7t )T Gt > ¢
h a | h
For horizontal parts: Q = st (—) +at(z—7) - 2
2 2 2 F: fia

_re_v(t()+@G-9)

q

I I

h h
aV(st(—)+at(———) tv P h h a tV (h ah — a?
Fz=f 2 2 2 ds=—J s(—)+a<———> ds =—|-b%+ b
o I rJ, \"\2 2 2 I \4 2

btV
= T(hb + 2ah — 2a2)

Q

tVa® btV

Ve =2F b+ F,h - Ve = ZE(Bh_ 4a)b +?(hb + 2ah — 2a2)h
bt(6ah® + 3h*b — 8a®)

B 121

_th®  bth®> t(h—2a)® 't

— (23 2 _ (h—2a)3 _
I=—+— o = 73 (2h* +6bh? — (h—2a)*) > ¢

e

b(6ah? + 3h?b — 8a3)
2% + 6bh? — (h— 2a)°

v, V (bt (%) +at (% - %) + tg%) _ V(12bh + 12a(h — a) + 31%)

T atN.A.) = = =
max( ) It It 2t(2h* + 6bh* — (h — 2a)?)



