
(130) 
  

  

CHAPTER 6: Shearing Stresses in Beams 

When a beam is in pure bending, the only stress resultants are the bending moments and the only 

stresses are the normal stresses acting on the cross sections. However, most beams are subjected to 

loads that produce both bending moments and shear forces. In these cases, both normal and shear 

stresses are developed in the beam. The normal stresses are calculated as explained in Chapter 4, 

provided the beam is constructed of a linearly elastic material. The shear stresses are discussed in 

this and the following two sections. The following figure expresses graphically that the elementary 

normal and shearing forces exerted on a given transverse section of a prismatic beam with a vertical 

plane of symmetry are equivalent to the bending couple M and the shearing force V. 

 

 

 

 

 

 

 

 

Let us now consider a small cubic element located in the vertical plane of symmetry of the beam 

(where we know that τxz must be zero) and examine the stresses exerted on its faces a normal stress 

σx and a shearing stress τxy are exerted on each of the two faces perpendicular to the x axis. But we 

know from Chapter 1 that, when shearing stresses τxy are exerted on the vertical faces of an element, 

equal stresses must be exerted on the horizontal faces of the same element. We thus conclude that 

longitudinal shearing stresses must exist in any member subjected to a transverse loading 

(we also conclude that shear stresses are zero at the edges: imagine this element is located at either 

the top or the bottom). This can be verified by considering a cantilever beam made of separate 

planks clamped together at one end. When a transverse load P is applied to the free end of this 

composite beam, the planks are observed to slide with respect to each other. In contrast, if a 

couple M is applied to the free end of the same composite beam, the various planks will bend into 

concentric arcs of circle and will not slide with respect to each other, thus verifying the fact that 

shear does not occur in a beam subjected to pure bending. As a result of shear stress, shear strain 

will be developed and these will tend to distort the cross section in a rather complex manner. For 

example, consider a short bar made of a highly deformable soft material and marked with grid lines 

as shown. When a shear load V is applied, it tends to deform these lines into the pattern shown and 

will cause the cross section to wrap. Although this is the case, we can generally assume the 

cross sectional wrapping due to shear is small enough so that it can be neglected. 

  

Longitudinal shear failure in timber beam 

� 
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Shear on the Horizontal Face of a Beam Element 

Consider a prismatic beam AB with a vertical plane of symmetry that supports various 

concentrated and distributed loads. At a distance x from end A we detach from the beam an element 

CDD’C’ of length Δx extending across the width of the beam from the upper surface of the beam to a 

horizontal plane located at a distance y1 from the neutral axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now consider the forces that exert on this element:  

 

 

 

 

 

 

 

 

Q = A 	��	���  = A��: A is the area of the top (or bottom) portion of the member’s cross section area 

above (or below) y1, and ��  is the distance from the neutral axis to the centroid A. The average 

 

 

	→��
 = �→	∆� +� (�� − ��)��� = �		�����	� =  !/# 
∆� = ( � − �)# � !�� =�

∆ # � !�� =�
$∆
# % 

A 

 
∆� = $%

# ∆
 → & = $%
#  

Q: first moment with respect to the neutral axis 

of the portion A of the cross section of the beam 

q: horizontal shear per unit length (shear flow)  
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shearing stress τavg on that face of the element is obtained by dividing ΔH by the area ΔA of the face. 

Observing that ΔA = t Δx, where t is the width of the element at the cut, we write: 

'()* = ∆�∆� =
$%# ∆
+	∆
 = $%#+  

 

'()* = $%#+  

 

'()* = the shear stress in the member at the point located a distance y from the neutral axis. This 

stress is assumed to be constant and therefore averaged across the width t of the member 

 

V = the internal resultant shear force, determined from the method of sections and the equations 

of equilibrium from “Statics”. 

 

I = the moment of inertia of the entire cross-sectional area calculated about the neutral axis 

 

t = the width of the member’s cross-sectional area, measured at the point where '()* is to be 

determined 

 

Q = A�� , where A is the area of the top (or bottom) portion of the member’s cross-sectional area, 

above (or below) the section plane where '()*	is measured, and y is the distance from the 

neutral axis to the centroid of A. 

 

 

The above equation is referred to as the shear formula . Although in the derivation we 

considered only the shear stresses acting on the beam’s longitudinal plane, the formula applies 

as well for finding the transverse shear stress on the beam’s cross-section. Recall that these 

stresses are complementary and numerically equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the lower and upper 

surfaces of the beam τyx = 0. 

It follows that τxy = 0. 
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Limitations on the Use of the Shear Formula.  

One of the major assumptions used in the development of the shear formula is that the shear 

stress is uniformly distributed over the width t at the section. In other words, Average value of 

stress ('()*)	is calculated because it is assumed that shear stress remains constant across the 

thickness which is only true for thin sections. 
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Example 1: Distribution of Shear Stresses in a Rectangular Beam 

The rectangular beam of width b and height h is subjected to a transverse shear force V. We aim to 

determine the average shear stress as a function of y, sketch the shear-stress distribution, and 

determine the maximum shear stress on the cross section. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

,-./ = 0123  

1 = 4�5 = 12 (4 + 8) 9 :(8 − 4) = 12:(8; − 4;)			<�			1 = � 4	=5
>
� = � 4	:=4 = : 4;2 ?�

> = 12:(8; − 4;)
>
�  

2 = 112 :@A = 112:(28)A = 23:8A																												 
3 = : 

,-./ = 0123 =
0	 12 :(82 − 42)
C23 :83D (:)

= 32 02:8 E1 − 4
;
8;F = 3205E1 − 4

;
8;F 

G3	4 = 0 → ,I-J = 3205 											GK=													G3	4 = L8 → , = 0 

 

 

The relation obtained shows that the 

maximum value of the shearing stress in a 

beam of rectangular cross section is 50% 

larger than the value V/A that would be 

obtained by wrongly assuming (as in 

Chapter 1) a uniform stress distribution 

across the entire cross section. 
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Example 2: Distribution of Shear Stresses in a Circular Beam 

The circular beam of radius r is subjected to a transverse shear force V. We aim to determine the 

maximum shear stress on the cross section. 

  

,I-J = 0123 =
0(4N3O 9 O2 N;)
(14ONP)(2N)

= 43 0ON; = 4305 

 

 

Example 3: Determine the maximum shear stress in the 

beam with a hollow circular cross section as shown. 

 

 

N.A. 

y 

z !Q 

N.A. 

y 

z ,I-J = 0123  

1 = 4N;3O 9 O2 N;; − 4NR3O 9 O2 NR; = 23 (N;A − NRA) 
2 = 14ON;P − 14ONRP = O4 (N;P − NRP), 3 = 2(N; − NR) 

,I-J = 0123 =
T 9 23 (N;A − NRA)O4 (N;P − NRP) 9 2(N; − NR) =

4T3O (N;
; + NRN; + NR;N;P − NRP ) 

 

1 = �4	=5 = �4	 C2UV; − 4;	=4D → 

1I-J = � 24	UV; − 4;	=4 = 23VA
W
X  

R y 

dy 
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Example 4: For the beam and loading shown, consider section n-n and determine the shearing stress 

at (a) point a, (b) point b, and (c) the largest shearing stress at section n-n. 

 

 

 

 

 

 

 

, = 0123  

From Statics: 0 = 90	Z[,			4� = ∑��∑� = ]X9(;X9R^X)	;9_PX9(`X9;X)a;X9R^X	;9`X9;X = 65	dd					 
(efgh3hfK	fi	[. 5. kh3@	Nlgel83	3f	3@l	mfklN	lK=) 

2n.�. = 112 160 9 20A + 160 9 20 9 (90 − 65); + 2 9 o 112 20 9 80A + 80 9 20 9 (65 − 40);q= 5.81 9 10^	ddP 

Part (a): 1- = 4�5 = (90 − 65) 9 20 9 160 = 80	000	ddA 

,- = 01-23- =
(90	000	[)(80	000	ddA)(5.81 9 10^	ddP)(2 9 20	dd) = 30.98	rTG 

Or: 1- = 4�5 = −(65 − 40) 9 20 9 80 = −40	000	ddA, ,- = stuvwu = (]X	XXX	n)xyPX	XXX	II
z{

(|.`R9RX}	II~)(;X	II) = −30.98	rTG 

Part (b): 1� = 4�5 = −(65 − 15) 9 20 9 30 = −30	000	ddA, 
	,� = 01�23� =

(90	000	[)(−30	000	ddA)(5.81 9 10^	ddP)(20	dd) = −23.23	rTG 

Part (c): 1n� = 4�5 = 2 9 C^|; 9 65 9 20D = 84	500	ddA, 
	,I-J = 01�23� =

(90	000	[)(84	500	ddA)(5.81 9 10^	ddP)(2 9 20	dd) = 32.72	rTG 
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Example 5: For the beam and loading 

shown, determine the minimum required 

width b, knowing that for the grade of 

timber used, σall = 12 MPa and τall = 825 kPa. 

 

From Statics: RA = 3.2 kN, RD = 4 kN 

Critical point is C:  

Mmax = 4 kNm, Vmax = -4 kN 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

x 

x 

V (kN) 

3.2 

M 

(kNm) 
3.2 

4 

0.8 

-4 

 
�I-J = rI-J8

2 → 

12 rTG = �4 9 10^ [dd��75 dd�
112 : 9 150A ddP  

→ : = 88.9 dd 

 

,I-J = 01
23 �I-J → 

0.825 rTG
= �4000 [� C752 9 : 9 75 ddAD

� 112 : 9 150A ddP�:  

→ : = 48.5 dd   
 

Answer: 

→ : = 88.9	dd 
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Example 6: A beam of wide-flange shape is 

subjected to a vertical shear force V = 80 kN. The 

cross-sectional dimensions of the beam are shown. 

Determine the distribution of shear stress over the 

cross section of the beam. 

 

At upper surface of the cross section: , = 0 

 

At point A on the flange: 

, = 0123  

 2 = R
R; 15 × 200A + 2 × �

R
R; 300 × 20

A + 20 × 300 ×
110;� = 155.6 × 10^	ddP 

 1 = 54� = 20 × 300 × 110 = 660000	ddA 3 = 300	dd 

, = 01
23 =

�80	000	[��660000	ddA�
�155.6 × 10^	ddP��300	dd�

= 1.13	rTG 

At point A on the web: 3 = 15	dd 

, = 01
23 =

�80	000	[��660000	ddA�
�155.6 × 10^	ddP��15	dd�

= 22.62	rTG 

 

At point C on the mid-web: 1 = 54� = 20 × 300 × 110 + 15 × 100 × 50
= 735000	ddA 3 = 15	dd 

, = 01
23 =

�80	000	[��735000	ddA�
�155.6 × 10^	ddP��15	dd� = 25.2	rTG 

 

 

 

 

 

 

 

 

 

 

 

N.A. 

 

 

N.A. C 

Note that most of the shear stress 

occurs in the web and is almost 

uniform throughout its depth, varying 

from 22.6 MPa to 25.2 MPa. It is for this 

reason that in practice, one usually 

assumes that the entire shear load is 

carried by the web, and that a good 

approximation of the maximum value 

of the shearing stress in the cross 

section can be obtained by dividing V 

by the cross-sectional area of the web: 

,I-J = 05��� =
80	000	[

15 × ���	���

= 22.2	rTG 
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Example 7: For the beam and loading shown, each screw is good for supporting 2 kN lateral load to 

avoid longitudinal sliding at a-a, determine the minimum required distance between screws.  

 

 

 

 

 

 

 

 

 

0I-J = 9	Z[	GK=	1-y- = ∑4�5 = 225 × �200 × 50� + 200 × �50 × 100� + 200 × �50 × 100� =
4	250	000	ddA, 2 = 2.36 × 10]	ddP → 	� = st

v =
�]XXX	n��P	;|X	XXX	IIz�

;.A^×RX�	II~ = 16.2	[/dd 

 

 

 

------------------------- CHECKING ------------------------  

 

1R =�4�5 = 225 × �300 × 50� + 175 × �50 × 50�
− 225 × �300 × 50� − 175 × �50 × 50� × 2
= −437	500	ddA

 

OR: 1R = ∑4�5 = −175 × 50 × 50 = −437	500	ddA 

�R =
01R
2 = �9000	[��−437	500	ddA�

2.36 × 10]	ddP = −1.668	[/dd 

1; =�4�5 = 225 × �300 × 50� = 3	375	000	ddA
 

�; =
01R
2 = �9000	[��3	375	000	ddA�

2.36 × 10]	ddP = 12.870	[/dd 

8ℎl8Z:	�; = � + 2�R → 12.87 = 16.2 + 2�−1.668�	� 

 

 

Spacing of screws: 

1 mm         16.2 N 

S                  2000 N 

S = (1 mm)(2000 N)/16.2 N =123.45 mm 

S = 120 mm is okay 
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Shear in the Longitudinal Direction of a Beam Element 

 

 

 

 

 

 

 

 

 

 

 

  

 	→��
 = �→	∆� + � (�� − ��)��� = �		�����	� =  !/# 

∆� = ( � − �)# � !�� =�
∆ # � !�� =�

$∆
# % → ∆� = $%
# ∆
 → & = $%

# → 	'()* =
∆�
∆� =

$%
# ∆

+	∆
 = $%

#+  
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Example 8: The built-up wooden beam 

shown is subjected to a vertical shear of 

8 kN. Knowing that the nails are spaced 

longitudinally every 60 mm at A and 

every 25 mm at B, determine the 

shearing force in the nails (a) at A, (b) at 

B (Given: Ix = 1.504 × 109 mm4). 

Dimensions are in mm. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

At A: 

 

 

 

 

 

 
� = 012 , 0 = 8000	[, 2 = 1.504 9 10]ddP, 
	1 =? 
 

At B: 

1 =�4�5 = (200 − 25)(400 9 50)
+ 2(200 − 75) 9 (50 9 50)= 4	125	000	ddA 

� = 012 = (8000	[)(4	125	000	dd
A)1.504 9 10]ddP= 21.94	[/dd 

 

25 mm 

25 mm 

& = ��. ��	�/�� 

� = � 9 � = 21.94	[/dd 9 25	dd = 549	[ 

 

 

 
1 = � 4�5 = �200 � 50��100 9 50� = 750 000 ddA 

� = 012 = (8000	[)(750	000	dd
A)1.504 9 10]ddP = 3.99	[/dd 

� = � 9 � = 3.99	[/dd 9 60	dd = 239.3	[ 
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Example 9: A box beam is constructed from four boards nailed together as shown. If each nail can 

support a shear force of 30 N, determine the maximum spacing (s) of the nails at B and at C that beam 

will support the force of 80 N.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60 mm 

15 mm 

60 mm 15 mm 

15 mm 

2n� = 11275(75A) − 112 45(45A) = 2	295	000	ddP 

1R = 4�5 = (30)(75 9 15) = 33	750	ddA 
�R = 1201R2 = 12 (80	[)(33	750	dd

A)2	295	000	ddP = 0.588	[/dd 

gR = 30	[0.588	[/dd = 51	dd 

1; = 4�5 = (30)(45 9 15) = 20	250	ddA 

�; = 1201;2 = 12 (80	[)(20	250	dd
A)2	295	000	ddP = 0.353	[/dd 

gR = 30	[0.353	[/dd = 85	dd 

OR: 

1A = 4�5 = (30)(60 9 15) = 27	000	ddA 

�R + �; = 01A2 = (80	[)(27	000	dd
A)2	295	000	ddP = 0.941[/dd 

We know: �R = 0.588	[/dd → �; = 0.941 − 0.588 = 0.353	[/dd 

OR: 

1P = 4�5 = (30)(15 9 15) = 6	750	ddA 
�R + �; = 01P2 = (80	[)(6	750	dd

A)2	295	000	ddP = 0.235	[/dd 

We know: �R = 0.588 n
II → �; = 0.235 − 0.588 = −0.353	[/dd 

 

(2) 

(1)  

N.A. 
30 mm 

15 mm 

15 mm 

45 mm 

30 mm 
N.A. 

B 

C 

75 mm 
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Example 10: Determine the shear stress distribution in the 

flanges and the web of the thin-walled beam with the cross 

section shown subjected to the shear force V = 60 kN. 

2n.�. = 22.2 9 10^	ddP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

D 
E 

 

14.8 MPa 

51.3 MPa 

44.8 MPa 

&� &� 
&� 

 

          For the web: 

											1 =�4�5 = �81 − 11.62 � (11.6 9 154) + C69.4 − g2D (8.1 9 g)= 134337.3 + 562.14	g − 4.05	g; 

,��� = 0123 = (60	000	[)(134337.3 + 562.14	g − 4.05	g
;)	ddA(22.2 9 10^	ddP)(8.1	dd)  

G3	g = 0	(�eelN	lK=	fi	3@l	kl:	G3	efhK3	�) → , = 44.8	rTG 

G3	g = 69.4	dd	(dh= − kl:	G3	efhK3	�) → , = 51.3	rTG 

          For the flanges: 

											1 = 4�5 = �81 − 11.62 � (11.6	g) = 872.32	g 
,��-�/� = 0123 = (60	000	[)(872.32	g)	ddA(22.2 9 10^	ddP)(11.6	dd) 
G3	g = 0	(efhK3	�) → , = 0	rTG 

G3	g = 72.95	dd	(efhK3	�) → , = 14.8	rTG 

Calculating shear flow: 

�R = 012 = ,3 = (60	000	[)(872.32	g)	dd
A

(22.2 9 10^	ddP) = 2.35	g 
53	dh=	imGK�l	 �g = 1542 dd�:	�R = �; = 181.5	[/dd 

�A = 01
2 = ,3 = �60	000	[)(134337.3 + 562.14	g − 4.05	g;)	ddA(22.2 9 10^	ddP)  

G3	g = 0	(�eelN	lK=	fi	3@l	kl:	G3	efhK3	�) → �A = 363	[/dd 

Note that at B we have: �R + �; = �A 

1- τ is linear in the flanges and parabolic in the web 

2- τ and q are parallel to the walls 

3- τ is equal to zero at free surfaces 

4- VQ/It holds true only where we have thin wall 

5- Equilibrium of forces and moments is satisfied 

6- Shear flow is similar to fluid flow, i.e., &� + &� = &� 
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 TBR 1: Determine the shear flow distribution in the 

beam with the cross section shown subjected to a 

shear force of V.  
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TBR 2: A shear force of 450 N is applied to 

the box girder. Determine the shear flow at 

points C and D. 
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TBR 3: Screws are placed at distance of 250 mm throughout the length of the beam and their 

diameter is 6 mm. The welding is done throughout the length. Find maximal value of M0 so that (1) the 

maximal tensile bending stress in the beam remains smaller than 120 MPa, (2) shear flow (q) in the 

weld remains smaller than 38 kN/m, and (c) shear stress in each screw remains smaller than 90 MPa 

(1390). 
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TBR 4: Maximal force that can be carried by the pins is 450 N (S = 8 cm and S’ = 1.5 cm). Find 

maximal W (1393). 
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Shear Center 

Example 11: Determine the shear flow distribution in the beam 

with the cross section shown subjected to a shear force of V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

� = 012 , 2 = 112 3@A + 2� 112 :3A + :3 �@2�
;� = 112 3@;(@ + 6:) 

For the flange: 1 = 4�5 = �; 9 (3g) → � = s9
 ¡w¢v = s�w¢;v  

 

� = � � 9 =g =�
X � 0@3g22 9 =g =

�
X

0@322 g
2
2 ?0
: = 03@:242  

� = �£ = 03@:;42 		(	��J = 0) 
0 = � ���� 9 =g£¤¥ 	x∑�� = 0{, �¦§		 ∑§ ¨ 0   

→ FBD is wrong → There should be an internal twisting 

moment. Therefore    → q ≠ VQ/I → q = VQ/I + qtwisting 

§f	lmhdhKG3l	3khg3hK�	k@lK	:lK=hK� ∶ 0l = �@ 

→ l = �@0 → l =
03@:;42 @
0 = 3:;(@ + 6:) 
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Important Points Regarding the Shear Center Concept 

1- Point O is called the shear center.  

2- The location of shear center is only a function of 

the geometry of the cross section. 

3- The shear center always lies on an axis of 

symmetry of the cross section (see the figure).  

4- For the beam shown below the shear center is 

located at point O. 

 

 

 

 

 

 

 

 

 

5- In the case of an oblique load P, the 

member will also be free of any twist if 

the load P is applied at the shear center 

of the section (see the figure). 

6- Combined stresses can be calculated 

using shear formula developed in this 

chapter and torsion formula developed 

in chapter 3 (see below and refer to 

Example 6.07 of Beer and Johnston, 6th 

version). 
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Example 12: Determine the location e of the shear 

center, point O, for the thin-walled member having the 

cross section shown. The member segments have the 

same thickness t. 

  

 

 

 

 

 

 

 

 

 

 

TBR 5: Determine the location e of the shear center, 

point O, for the thin-walled member having the cross 

section shown. The member segments have the same 

thickness t. 

 

 

 

 

 

  
 

ª 

dA 
r ª 

 

2 = 1
12 � 3

sin 45°� �2= sin 45°�A � 2�:3�= sin 45°�;�
= 3=;

3 �= � 3:� 

1 = 4�5 = �= sin 45°��g3� = �3= sin 45°� g 

� = 01
2 = 0�3= sin 45°� g

3=;
3 �= � 3:� = 30 sin 45°

=�= � 3:� g 

� = � � =g =�
X

� 30 sin 45°
=�= � 3:� g =g = 3:; sin 45°

2=�= � 3:� 0�
X

 

0 9 l = ��2= sin 45°� = 3:; sin 45°
2=�= � 3:� 0�2= sin 45°� 

l = 3:;
2�= � 3:� 

2 = 2 � 1
12 3 �1

2 N�A � 1
2 N3 �N � 1

4 N�;� � �   �N sin ¯�;�N3 =¯�
°;

y°;
→ 

2 = 3.15413 3NA
 

1 = 1
2 N3 �N � 1

4 N� � �   �N sin ¯��N3 =¯�
O2

¯
= �0.625 � cos ¯�3N2

 

� = 01
2 = 0�0.625 � cos ¯�3N2

3.15413 3N3 = 0�0.625 � cos ¯�
3.15413 N  

0 9 l = N 9 �   �� N=¯�
O2

�O2
= 0N

3.15413 �   �0.625 � cos ¯�
O2

�O2
=¯ → 

l = 1.26 N 
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Example 13: The cross section of an 

unbalanced wide-flange beam is shown in 

the figure. Derive the following formula for 

the distance h1 from the centerline of one 

flange to the shear center S: 

@R = 3;:;A@3R:RA + 3;:;A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

ifN	3@l	mli3	imGK�l:	�R = 01R2 =
0(:R2 − g2) 9 g3R2  

 

�R = � �	=g =�³
X � 0(:R − g) 9 g3R22 	=g =�³

X
0:RA3R122  

 

�r� = 0 → �R@ = 0@; → @; =
0:RA3R122 @0 = :RA3R122 @ 

 

@R = @ − @;		GK=		2 = 112 3R:RA + 112 3;:;A 
→ @R = 3;:;A@:RA3R + :;A3; 

 

�fN	:R = :;			GK=			3R = 3; →	@R = @2 

Note that shear flow in the web (horizontal part) is zero because if you cut it at 

any section Q becomes equal to zero. 

 

A 
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TBR 6: A beam with the cross section shown undergoes a downward 

shear force of 34.5 kN. Find center of shear. If this shear force is 

applied at the center of shear, find distribution of shear flow on the 

cross section as well as magnitude and location of maximal shear 

stress (1391). 

:R = 2	8d, :; = 8	8d,
3 = 1	8d		GK=			ℎ = 11	8d 
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TBR 7: Find center of shear for thin wall 

beam shown as functions of a, b, and h. If 

the shear force of V is applied to the 

center of shear, determine position and 

magnitude of the maximal shear stress 

(1392). 

 

 

 

 

 

2 = 2 112 3@A + 2:3 �@2�
; − 112 3(@ − 2G)A = 3@
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2 − 3(@ − 2G)A12  

�fN	3@l	gdGmm	´lN3h8Gm	eGN3g:		1 = g3 C�; − G + ¢;D, 
� = 012 =

g30 C@2 − G + g2D2  

�R = � g30 C@2 − G + g2D2 =g =-
X
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X
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2 + G
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X
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;

2 :F�
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= :3042 (@: + 2G@ − 2G;) 
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